Source code for rubin_sim.maf.plots.special_plotters

__all__ = ("FOPlot", "SummaryHistogram")


import healpy as hp
import matplotlib.pyplot as plt
import numpy as np

import rubin_sim.maf.metrics as metrics

from .plot_handler import BasePlotter


[docs] class FOPlot(BasePlotter): """ Special plotter to generate and label fO plots. """ def __init__(self): self.plot_type = "FO" self.object_plotter = False self.default_plot_dict = { "title": None, "xlabel": "Number of visits", "ylabel": "Area (1000s of square degrees)", "scale": None, "asky": 18000.0, "n_visits": 825, "x_min": 0, "x_max": None, "y_min": 0, "y_max": None, "linewidth": 2, "reflinewidth": 2, "figsize": None, }
[docs] def __call__(self, metric_value, slicer, user_plot_dict, fig=None): """ Parameters ---------- metric_value : `numpy.ma.MaskedArray` The metric values from the bundle. slicer : `rubin_sim.maf.slicers.TwoDSlicer` The slicer. user_plot_dict: `dict` Dictionary of plot parameters set by user (overrides default values). fig : `matplotlib.figure.Figure` Matplotlib figure number to use. Default = None, starts new figure. Returns ------- fig : `matplotlib.figure.Figure` Figure with the plot. """ if not hasattr(slicer, "nside"): raise ValueError("FOPlot to be used with healpix or healpix derived slicers.") plot_dict = {} plot_dict.update(self.default_plot_dict) plot_dict.update(user_plot_dict) if plot_dict["scale"] is None: plot_dict["scale"] = hp.nside2pixarea(slicer.nside, degrees=True) / 1000.0 if fig is None: fig, ax = plt.subplots(figsize=plot_dict["figsize"]) # Expect metric_value to be something like number of visits cumulative_area = np.arange(1, metric_value.compressed().size + 1)[::-1] * plot_dict["scale"] ax.plot( np.sort(metric_value.compressed()), cumulative_area, "k-", linewidth=plot_dict["linewidth"], zorder=0, ) # This results in calculating the summary stats in two places .. # not the ideal choice but easiest for most uses in this case. asky = plot_dict["asky"] n_visits = plot_dict["n_visits"] rarr = np.array(list(zip(metric_value.compressed())), dtype=[("fO", metric_value.dtype)]) f_o_area = metrics.FOArea(col="fO", n_visit=n_visits, norm=False, nside=slicer.nside).run(rarr) f_o_nv = metrics.FONv(col="fO", asky=asky, norm=False, nside=slicer.nside).run(rarr) ax.axvline(x=n_visits, linewidth=plot_dict["reflinewidth"], color="b", linestyle=":") ax.axhline(y=asky / 1000.0, linewidth=plot_dict["reflinewidth"], color="r", linestyle=":") # Add lines for nvis_median and f_o_area: # note if these are -666 (badval), they will 'disappear' nvis_median = f_o_nv["value"][np.where(f_o_nv["name"] == "MedianNvis")][0] ax.axvline( x=nvis_median, linewidth=plot_dict["reflinewidth"], color="b", alpha=0.5, linestyle="-", label=f"f$_0$ Med. Nvis. (@ {asky/1000 :.0f}K sq deg) = {nvis_median :.0f} visits", ) ax.axhline( y=f_o_area / 1000.0, linewidth=plot_dict["reflinewidth"], color="r", alpha=0.5, linestyle="-", label=f"f$_0$ Area (@ {n_visits :.0f} visits) = {f_o_area/1000 :.01f}K sq deg", ) ax.legend(loc="upper right", fontsize="small", numpoints=1, framealpha=1.0) ax.set_xlabel(plot_dict["xlabel"]) ax.set_ylabel(plot_dict["ylabel"]) ax.set_title(plot_dict["title"]) x_min = plot_dict["x_min"] x_max = plot_dict["x_max"] y_min = plot_dict["y_min"] y_max = plot_dict["y_max"] if (x_min is not None) or (x_max is not None): ax.set_xlim([x_min, x_max]) if (y_min is not None) or (y_max is not None): ax.set_ylim([y_min, y_max]) return fig
[docs] class SummaryHistogram(BasePlotter): """ Special plotter to summarize metrics which return a set of values at each slice_point, e.g. a histogram the metric result per slicepoint. (example: the results of with the rubin_sim.maf.metrics.TgapsMetric). Essentially, this collapses the metric value over the sky and plots a summarized version (reduced to a single value per point according to the plot_dict['metricReduce'] metric). """ def __init__(self): self.plot_type = "SummaryHistogram" self.object_plotter = True self.default_plot_dict = { "title": None, "xlabel": None, "ylabel": "Count", "label": None, "cumulative": False, "x_min": None, "x_max": None, "y_min": None, "y_max": None, "color": "b", "linestyle": "-", "histStyle": True, "grid": True, "metricReduce": metrics.SumMetric(), "yscale": None, "xscale": None, "bins": None, "figsize": None, }
[docs] def __call__(self, metric_value, slicer, user_plot_dict, fig=None): """ Parameters ---------- metric_value : `numpy.ma.MaskedArray` Handles 'object' datatypes for the masked array. slicer : `rubin_sim.maf.slicer` Any MAF slicer. user_plot_dict: `dict` Dictionary of plot parameters set by user to override defaults. 'metricReduce' (a `rubin_sim.maf.metric`) indicates how to marginalize the metric values calculated at each point to a single series of values over the sky. 'histStyle' (True/False) indicates whether to plot the results as a step histogram (True) or as a series of values (False) 'bins' (np.ndarray) sets the x values for the resulting plot and should generally match the bins used with the metric. fig : `matplotlib.figure.Figure` Matplotlib figure to use. Default starts a new figure. Returns ------- fig: `matplotlib.figure.Figure` Matplotlib figure used to create the plot. """ plot_dict = {} plot_dict.update(self.default_plot_dict) plot_dict.update(user_plot_dict) # Combine the metric values across all slice_points. if not isinstance(plot_dict["metricReduce"], metrics.BaseMetric): raise ValueError("Expected plot_dict[metricReduce] to be a MAF metric object.") # Check that there is data to plot if np.size(metric_value.compressed()) == 0: raise ValueError(f"Did not find any data to plot in {self.plot_type}.") # Get the data type dt = metric_value.compressed()[0].dtype # Change an array of arrays to a 2-d array of correct dtype m_v = np.array(metric_value.compressed().tolist(), dtype=[("metric_value", dt)]) # Make an array to hold the combined result final_hist = np.zeros(m_v.shape[1], dtype=float) metric = plot_dict["metricReduce"] metric.colname = "metric_value" # Loop over each bin and use the selected metric to combine the results for i in np.arange(final_hist.size): final_hist[i] = metric.run(m_v[:, i]) if plot_dict["cumulative"]: final_hist = final_hist.cumsum() if fig is None: fig = plt.figure(figsize=plot_dict["figsize"]) bins = plot_dict["bins"] if plot_dict["histStyle"]: leftedge = bins[:-1] rightedge = bins[1:] x = np.vstack([leftedge, rightedge]).T.flatten() y = np.vstack([final_hist, final_hist]).T.flatten() else: # Could use this to plot things like FFT x = bins[:-1] y = final_hist # Make the plot. plt.plot( x, y, linestyle=plot_dict["linestyle"], label=plot_dict["label"], color=plot_dict["color"], ) # Add labels. plt.xlabel(plot_dict["xlabel"]) plt.ylabel(plot_dict["ylabel"]) plt.title(plot_dict["title"]) plt.grid(plot_dict["grid"], alpha=0.3) # Set y and x limits, if provided. if plot_dict["x_min"] is not None: plt.xlim(left=plot_dict["x_min"]) elif bins[0] == 0: plt.xlim(left=0) if plot_dict["x_max"] is not None: plt.xlim(right=plot_dict["x_max"]) if plot_dict["y_min"] is not None: plt.ylim(bottom=plot_dict["y_min"]) elif final_hist.min() == 0: plot_dict["y_min"] = 0 if plot_dict["y_max"] is not None: plt.ylim(top=plot_dict["y_max"]) if plot_dict["yscale"] is not None: plt.yscale(plot_dict["yscale"]) if plot_dict["xscale"] is not None: plt.xscale(plot_dict["xscale"]) return fig