__all__ = ["TEFF_FIDUCIAL_DEPTH", "TEFF_FIDUCIAL_EXPTIME", "TeffStacker", "compute_teff"]
from collections import defaultdict
import numpy as np
from .base_stacker import BaseStacker
# From reference von Karman 500nm zenith seeing of 0.69"
# median zenith dark seeing from sims_skybrightness_pre
# airmass = 1
# 2 "snaps" of 15 seconds each
# m5_flat_sed sysEngVals from rubin_sim
#   commit 6d03bd49550972e48648503ed60784a4e6775b82 (2021-05-18)
# These include constants from:
#   https://github.com/lsst-pst/syseng_throughputs/blob/master/notebooks/generate_sims_values.ipynb
#   commit 7abb90951fcbc70d9c4d0c805c55a67224f9069f (2021-05-05)
# See https://github.com/lsst-sims/smtn-002/blob/master/notebooks/teff_fiducial.ipynb
# If we do not recognize the filter, return a nan. The np.array(np.nan).item
# is a hack to define a function that retruns a nan without defining a useless
# new function or violating the style guide by using a lambda function.
TEFF_FIDUCIAL_DEPTH = defaultdict(
    np.array(np.nan).item,
    {
        "u": 23.71,
        "g": 24.67,
        "r": 24.24,
        "i": 23.82,
        "z": 23.21,
        "y": 22.40,
    }.items(),
)
TEFF_FIDUCIAL_EXPTIME = 30.0
[docs]
def compute_teff(m5_depth, filter_name, exptime=None, fiducial_depth=None, teff_base=None, normed=False):
    """Compute the effective exposure time for a limiting magnitude.
    Parameters
    ----------
    m5_depth : `float` or `numpy.ndarray`, (N,)
        The five sigma point source limiting magintude.
    filter_name : `str` or `numpy.ndarray`, (N,)
        The name of the filter.
    exptime : `float` or `numpy.ndarray`, (N,)
        The expsore time (seconds), defaults to TEFF_FIDUCIAL_EXPTIME.
    fiducial_depth: `dict` [`str`, `float`]
        A mapping of filter to fiducial depth.
        Defaults to TEFF_FIDUCIAL_DEPTH.
    teff_base : `float`
        The exposure time (in seconds) corresponding to the exposure depth.
    normed : `bool`
        Normalize against the exposure time, such that a value of 1 corresponds
        to the exposure having been taken at fiducial conditions. Defaults
        to False.
    Returns
    -------
    t_eff : `float`
        Effective expsore time, in seconds (if normed is False) or unitless
        (if normed is true).
    """
    if fiducial_depth is None:
        fiducial_depth = TEFF_FIDUCIAL_DEPTH
    if teff_base is None:
        teff_base = TEFF_FIDUCIAL_EXPTIME
    if exptime is None:
        exptime = TEFF_FIDUCIAL_EXPTIME
    try:
        fiducial_m5_depth = fiducial_depth[filter_name]
    except TypeError:
        # If filter_name is not one value, but an iterable, map it according
        # to fiducial_depth.
        if len(filter_name) != len(m5_depth):
            raise ValueError()
        fiducial_m5_depth = np.array([fiducial_depth[b] for b in filter_name])
    t_eff = teff_base * 10.0 ** (0.8 * (m5_depth - fiducial_m5_depth))
    if normed:
        tau = t_eff / exptime
        return tau
    else:
        return t_eff 
[docs]
class TeffStacker(BaseStacker):
    """Add t_eff column corresponding to fiveSigmaDepth.
    Parameters
    ----------
    m5_col : `str` ('fiveSigmaDepth')
        Colum name for the five sigma limiting depth per pointing.
        Defaults to "fiveSigmaDepth".
    filter_col : `str`
        Defaults to "filter"
    exptime_col : `str`
        The column with the exposure time, defaults to
        "visitExposureTime"
    fiducial_depth: `dict` [`str`, `float`]
        A mapping of filter to fiducial depth.
        Defaults to TEFF_FIDUCIAL_DEPTH.
    fiducial_exptime : `float`
        The exposure time (in seconds) corresponding to the exposure depth.
    normed : `bool`
        Normalize to exporuse time.
    """
    cols_added = ["t_eff"]
    def __init__(
        self,
        m5_col="fiveSigmaDepth",
        filter_col="band",
        exptime_col="visitExposureTime",
        fiducial_depth=None,
        fiducial_exptime=None,
        normed=False,
        **kwargs,
    ):
        self.m5_col = m5_col
        self.filter_col = filter_col
        self.exptime_col = exptime_col
        self.normed = normed
        self.fiducial_depth = TEFF_FIDUCIAL_DEPTH if fiducial_depth is None else fiducial_depth
        self.fiducial_exptime = TEFF_FIDUCIAL_EXPTIME if fiducial_exptime is None else fiducial_exptime
        self.cols_req = [self.m5_col, self.filter_col, self.exptime_col]
        if self.normed and self.exptime_col not in self.cols_req:
            self.cols_req.append(self.exptime_col)
        self.units = "" if self.normed else "seconds"
    def _run(self, sim_data, cols_present=False):
        if cols_present:
            # Column already present in data; assume it is correct and does not
            # need recalculating.
            return sim_data
        sim_data["t_eff"] = compute_teff(
            sim_data[self.m5_col],
            sim_data[self.filter_col],
            sim_data[self.exptime_col],
            self.fiducial_depth,
            self.fiducial_exptime,
            normed=self.normed,
        )
        return sim_data