Source code for rubin_sim.maf.stackers.neo_dist_stacker

__all__ = ("NEODistStacker",)

import numpy as np

from .base_stacker import BaseStacker


[docs] class NEODistStacker(BaseStacker): """ For each observation, find the max distance to a ~144 km NEO, also stack on the x,y position of the object. """ cols_added = ["MaxGeoDist", "NEOHelioX", "NEOHelioY"] def __init__( self, stepsize=0.001, max_dist=3.0, min_dist=0.3, H=22, elong_col="solarElong", filter_col="filter", sun_az_col="sunAz", az_col="azimuth", m5_col="fiveSigmaDepth", ): """ stepsize: The stepsize to use when solving (in AU) max_dist: How far out to try and measure (in AU) H: Asteroid magnitude Adds columns: MaxGeoDist: Geocentric distance to the NEO NEOHelioX: Heliocentric X (with Earth at x,y,z (0,1,0)) NEOHelioY: Heliocentric Y (with Earth at (0,1,0)) Note that both opsim v3 and v4 report solarElongation in degrees. """ self.units = ["AU", "AU", "AU"] # Also grab things needed for the HA stacker self.cols_req = [elong_col, filter_col, sun_az_col, az_col, m5_col] self.sun_az_col = sun_az_col self.elong_col = elong_col self.filter_col = filter_col self.az_col = az_col self.m5_col = m5_col self.H = H # Magic numbers (Ivezic '15, private comm.)that convert an asteroid # V-band magnitude to LSST filters: # V_5 = m_5 + (adjust value) self.limiting_adjust = { "u": -2.1, "g": -0.5, "r": 0.2, "i": 0.4, "z": 0.6, "y": 0.6, } self.deltas = np.arange(min_dist, max_dist + stepsize, stepsize) self.G = 0.15 # Magic numbers from http://adsabs.harvard.edu/abs/2002AJ....124.1776J self.a1 = 3.33 self.b1 = 0.63 self.a2 = 1.87 self.b2 = 1.22 def _run(self, sim_data, cols_present=False): if cols_present: # This is a pretty rare stacker. Assume we need to rerun pass elong_rad = np.radians(sim_data[self.elong_col]) v5 = np.zeros(sim_data.size, dtype=float) + sim_data[self.m5_col] for filter_name in self.limiting_adjust: fmatch = np.where(sim_data[self.filter_col] == filter_name) v5[fmatch] += self.limiting_adjust[filter_name] for i, elong in enumerate(elong_rad): # Law of cosines: # Heliocentric Radius of the object R = np.sqrt(1.0 + self.deltas**2 - 2.0 * self.deltas * np.cos(elong)) # Angle between sun and earth as seen by NEO alphas = np.arccos((1.0 - R**2 - self.deltas**2) / (-2.0 * self.deltas * R)) ta2 = np.tan(alphas / 2.0) phi1 = np.exp(-self.a1 * ta2**self.b1) phi2 = np.exp(-self.a2 * ta2**self.b2) alpha_term = 2.5 * np.log10((1.0 - self.G) * phi1 + self.G * phi2) appmag = self.H + 5.0 * np.log10(R * self.deltas) - alpha_term # There can be some local minima/maxima when solving, so # need to find the *1st* spot where it is too faint, not the # last spot it is bright enough. too_faint = np.where(appmag > v5[i]) # Check that there is a minimum if np.size(too_faint[0]) == 0: sim_data["MaxGeoDist"][i] = 0 else: sim_data["MaxGeoDist"][i] = np.min(self.deltas[too_faint]) # Make coords in heliocentric interior = np.where(elong_rad <= np.pi / 2.0) outer = np.where(elong_rad > np.pi / 2.0) sim_data["NEOHelioX"][interior] = sim_data["MaxGeoDist"][interior] * np.sin(elong_rad[interior]) sim_data["NEOHelioY"][interior] = ( -sim_data["MaxGeoDist"][interior] * np.cos(elong_rad[interior]) + 1.0 ) sim_data["NEOHelioX"][outer] = sim_data["MaxGeoDist"][outer] * np.sin(np.pi - elong_rad[outer]) sim_data["NEOHelioY"][outer] = sim_data["MaxGeoDist"][outer] * np.cos(np.pi - elong_rad[outer]) + 1.0 # Flip the X coord if sun az is negative? if sim_data[self.az_col].min() < -np.pi / 2.0: halfval = 180.0 else: halfval = np.pi flip = np.where( ((sim_data[self.sun_az_col] > halfval) & (sim_data[self.az_col] > halfval)) | ((sim_data[self.sun_az_col] < halfval) & (sim_data[self.az_col] > halfval)) ) sim_data["NEOHelioX"][flip] *= -1.0 return sim_data