Source code for rubin_sim.maf.stackers.n_follow_stacker

__all__ = ("find_telescopes", "NFollowStacker")


import numpy as np

from .base_stacker import BaseStacker
from .coord_stackers import ra_dec2_alt_az


[docs] def find_telescopes(min_size=3.0): """Finds telescopes larger than min_size, from list of large telescopes based on http://astro.nineplanets.org/bigeyes.html. Returns ------- np.recarray Array of large telescopes with columns [aperture, name, lat, lon]. """ # Aperture Name Location http://astro.nineplanets.org/bigeyes.html telescopes = [ [10.4, "Gran Canarias", "La Palma"], [10.0, "Keck", "Mauna Kea"], [10.0, "Keck II", "Mauna Kea"], [9.2, "SALT", "South African Astronomical Observatory"], [9.2, "Hobby-Eberly", "Mt. Fowlkes"], [8.4, "Large Binocular Telescope", "Mt. Graham"], [8.3, "Subaru", "Mauna Kea"], [8.2, "Antu", "Cerro Paranal"], [8.2, "Kueyen", "Cerro Paranal"], [8.2, "Melipal", "Cerro Paranal"], [8.2, "Yepun", "Cerro Paranal"], [8.1, "Gemini North", "Mauna Kea"], [8.1, "Gemini South", "Cerro Pachon"], [6.5, "MMT", "Mt. Hopkins"], [6.5, "Walter Baade", "La Serena"], [6.5, "Landon Clay", "La Serena"], [6.0, "Bolshoi Teleskop Azimutalnyi", "Nizhny Arkhyz"], [6.0, "LZT", "British Columbia"], [5.0, "Hale", "Palomar Mountain"], [4.3, "Dicovery Channel", "Lowell Observatory"], [4.2, "William Herschel", "La Palma"], [4.2, "SOAR", "Cerro Pachon"], [4.2, "LAMOST", "Xinglong Station"], [4.0, "Victor Blanco", "Cerro Tololo"], [4.0, "Vista", "Cerro Paranal"], [3.9, "Anglo-Australian", "Coonabarabran"], [3.8, "Mayall", "Kitt Peak"], [3.8, "UKIRT", "Mauna Kea"], [3.6, "360", "Cerro La Silla"], [3.6, "Canada-France-Hawaii", "Mauna Kea"], [3.6, "Telescopio Nazionale Galileo", "La Palma"], [3.5, "MPI-CAHA", "Calar Alto"], [3.5, "New Technology", "Cerro La Silla"], [3.5, "ARC", "Apache Point"], [3.5, "WIYN", "Kitt Peak"], [3.0, "Shane", "Mount Hamilton"], [3.0, "NASA IRTF", "Mauna Kea"], ] scopes = np.zeros( len(telescopes), dtype=list(zip(["aperture", "name", "lat", "lon"], [float, (np.str_, 38), float, float])), ) # name, lat (S negative), lon (W negative) observatories = [ ["Cerro Paranal", -24, 38, -70, 24], ["Nizhny Arkhyz", 43, 39, 41, 26], ["Cerro La Silla", -29, 15, -70, 44], ["Lowell Observatory", 35, 12, -111, 40], ["Apache Point", 32, 47, -105, 49], ["Mount Hamilton", 37, 21, -121, 38], ["South African Astronomical Observatory", -32, 23, 20, 49], ["Cerro Pachon", -30, 20, -70, 59], ["Coonabarabran", -31, 17, 149, 0o4], ["Mt. Fowlkes", 30, 40, -104, 1], ["La Palma", 28, 46, -17, 53], ["Mt. Graham", 32, 42, -109, 53], ["Calar Alto", 37, 13, -2, 33], ["British Columbia", 49, 17, -122, 34], ["Kitt Peak", 31, 57, -111, 37], ["La Serena", -30, 10, -70, 48], ["Palomar Mountain", 33, 21, -116, 52], ["Xinglong Station", 40, 23, 105, 50], ["Mt. Hopkins", 31, 41, -110, 53], ["Cerro Tololo", -30, 10, -70, 49], ["Mauna Kea", 19, 50, -155, 28], ] # Make a nice little dict to look up the observatory positions obs = {} for i, ob in enumerate(observatories): obs[ob[0]] = [ (np.abs(ob[1]) + ob[2] / 60.0) * (ob[1] / np.abs(ob[1])), (np.abs(ob[3]) + ob[4] / 60.0) * (ob[3] / np.abs(ob[3])), ] for i, telescope in enumerate(telescopes): scopes["aperture"][i] = telescope[0] scopes["name"][i] = telescope[1] scopes["lat"][i], scopes["lon"][i] = obs[telescope[2]] scopes = scopes[np.where(scopes["aperture"] >= min_size)] return scopes
[docs] class NFollowStacker(BaseStacker): """Add the number of telescopes ('nObservatories') that could follow up any visit at (any of the) times in timeStep, specifying the minimum telescope size (in meters) and airmass limit. Parameters ---------- minSize: float, optional The minimum telescope aperture to use, in meters. Default 3.0. airmass_limit: float, optional The maximum airmass allowable at the follow-up observatory. Default 2.5. time_steps: np.array or list of floats, optional The timesteps to check for followup opportunities, in hours. Default is np.arange(0.5, 12., 3.0). mjd_col: str, optional The exposure MJD column name. Default 'observationStartMJD'. ra_col: str, optional The RA column name. Default 'fieldRA'. dec_col: str, optional The Dec column name. Default 'fieldDec'. raDecDeg: bool, optional Flag whether RA/Dec are in degrees (True) or radians (False). """ cols_added = ["nObservatories"] def __init__( self, min_size=3.0, airmass_limit=2.5, time_steps=np.arange(0.5, 12.0, 3.0), mjd_col="observationStartMJD", ra_col="fieldRA", dec_col="fieldDec", degrees=True, ): self.mjd_col = mjd_col self.ra_col = ra_col self.dec_col = dec_col self.degrees = degrees self.cols_added_dtypes = [int] self.cols_req = [self.mjd_col, self.ra_col, self.dec_col] self.units = ["#"] self.airmass_limit = airmass_limit self.time_steps = time_steps self.telescopes = find_telescopes(min_size=min_size) def _run(self, sim_data, cols_present=False): if cols_present: return sim_data sim_data["nObservatories"] = 0 if self.degrees: ra = np.radians(sim_data[self.ra_col]) dec = np.radians(sim_data[self.dec_col]) else: ra = sim_data[self.ra_col] dec = sim_data[self.dec_col] for obs in self.telescopes: obs_got_it = np.zeros(len(sim_data[self.ra_col]), int) obs_lon = np.radians(obs["lon"]) obs_lat = np.radians(obs["lat"]) for step in self.time_steps: alt, az = ra_dec2_alt_az( ra, dec, obs_lon, obs_lat, sim_data[self.mjd_col] + step / 24.0, altonly=True, ) airmass = 1.0 / (np.cos(np.pi / 2.0 - alt)) followed = np.where((airmass <= self.airmass_limit) & (airmass >= 1.0)) # If the observatory got an observation, save this # into obs_got_it. # obs_got_it will be 1 if ANY of the times got an observation. obs_got_it[followed] = 1 # If an observatory got an observation, count it in nObservatories. sim_data["nObservatories"] += obs_got_it return sim_data