Source code for rubin_sim.maf.stackers.m5_optimal_stacker

__all__ = ("M5OptimalStacker", "generate_sky_slopes")

import numpy as np
from rubin_scheduler.utils import Site

from .base_stacker import BaseStacker


[docs] def generate_sky_slopes(): """Fit a line to how the sky brightness changes with airmass.""" import healpy as hp import rubin_sim.skybrightness as sb sm = sb.SkyModel(mags=True, moon=False, twilight=False, zodiacal=False) mjd = 57000 nside = 32 airmass_limit = 2.0 dec, ra = hp.pix2ang(nside, np.arange(hp.nside2npix(nside))) dec = np.pi / 2 - dec sm.set_ra_dec_mjd(ra, dec, mjd) mags = sm.return_mags() filters = mags.dtype.names filter_slopes = {} for filter_name in filters: good = np.where((~np.isnan(mags[filter_name])) & (sm.airmass < airmass_limit)) pf = np.polyfit(sm.airmass[good], mags[filter_name][good], 1) filter_slopes[filter_name] = pf[0] print(filter_slopes)
[docs] class M5OptimalStacker(BaseStacker): """Make a new m5 column as if observations were taken on the meridian. If the moon is up, assume sky brightness stays the same. Assumes seeing scales as airmass^0.6. Uses linear fits for sky and airmass relation. Parameters ---------- airmass_col : `str` Column name for the airmass per pointing. dec_col : `str` Column name for the pointing declination. sky_bright_col : `str` Column name for the sky brighntess per pointing. filter_col : `str` Column name for the filter name. m5_col : `str` Colum name for the five sigma limiting depth per pointing. moon_alt_col : `str` Column name for the moon altitude per pointing. sun_alt_col : `str` Column name for the sun altitude column. site : `str` Name of the site. """ cols_added = ["m5_optimal"] def __init__( self, airmass_col="airmass", dec_col="fieldDec", sky_bright_col="skyBrightness", seeing_col="seeingFwhmEff", m5_col="fiveSigmaDepth", filter_col="filter", moon_alt_col="moonAlt", sun_alt_col="sunAlt", site="LSST", ): self.site = Site(site) self.units = ["mags"] self.airmass_col = airmass_col self.dec_col = dec_col self.sky_bright_col = sky_bright_col self.seeing_col = seeing_col self.filter_col = filter_col self.moon_alt_col = moon_alt_col self.sun_alt_col = sun_alt_col self.m5_col = m5_col self.cols_req = [ airmass_col, dec_col, sky_bright_col, seeing_col, filter_col, moon_alt_col, sun_alt_col, ] self.cols_req = list(set(self.cols_req)) def _run(self, sim_data, cols_present=False): # k_atm values from rubin_sim.operations gen_output.py k_atm = {"u": 0.50, "g": 0.21, "r": 0.13, "i": 0.10, "z": 0.07, "y": 0.18} # Linear fits to sky brightness change, # no moon, twilight, or zodiacal components # Use generate_sky_slopes to regenerate if needed. sky_slopes = { "g": -0.52611780327408397, "i": -0.67898669252082422, "r": -0.61378749766766827, "u": -0.27840980367303503, "y": -0.69635091524779691, "z": -0.69652846002009128, } min_z_possible = np.abs(np.radians(sim_data[self.dec_col]) - self.site.latitude_rad) min_airmass_possible = 1.0 / np.cos(min_z_possible) for filter_name in np.unique(sim_data[self.filter_col]): delta_sky = sky_slopes[filter_name] * (sim_data[self.airmass_col] - min_airmass_possible) delta_sky[ np.where((sim_data[self.moon_alt_col] > 0) | (sim_data[self.sun_alt_col] > np.radians(-18.0))) ] = 0 # Using Approximation that FWHM~X^0.6. # So seeing term in m5 of: 0.25 * log (7.0/FWHMeff ) # Goes to 0.15 log(FWHM_min / FWHM_eff) in the difference m5_optimal = ( sim_data[self.m5_col] - 0.5 * delta_sky - 0.15 * np.log10(min_airmass_possible / sim_data[self.airmass_col]) - k_atm[filter_name] * (min_airmass_possible - sim_data[self.airmass_col]) ) good = np.where(sim_data[self.filter_col] == filter_name) sim_data["m5_optimal"][good] = m5_optimal[good] return sim_data