Source code for rubin_sim.maf.slicers.movie_slicer

# cumulative one dimensional movie slicer
__all__ = ("MovieSlicer",)

import os
import subprocess
import warnings
from functools import wraps
from subprocess import CalledProcessError

import numpy as np

from rubin_sim.maf.stackers import ColInfo
from rubin_sim.maf.utils import optimal_bins

from .base_slicer import BaseSlicer


[docs] class MovieSlicer(BaseSlicer): def __init__( self, slice_col_name=None, slice_col_units=None, bins=None, bin_min=None, bin_max=None, bin_size=None, verbose=True, badval=0, cumulative=True, force_no_ffmpeg=False, ): """The 'movieSlicer' acts similarly to the OneDSlicer (slices on one data column). However, the data slices from the movieSlicer are intended to be fed to another slicer, which then (together with a set of Metrics) calculates metric values + plots at each slice created by the movieSlicer. The job of the movieSlicer is to track those slices and put them together into a movie. 'slice_col_name' is the name of the data column to use for slicing. 'slice_col_units' lets the user set the units (for plotting purposes) of the slice column. 'bins' can be a numpy array with the binpoints for sliceCol or a single integer value (if a single value, this will be used as the number of bins, together with data min/max or bin_min/max), as in numpy's histogram function. If 'bin_size' is used, this will override the bins value and will be used together with the data min/max or bin_min/Max to set the binpoint values. Bins work like numpy histogram bins: the last 'bin' value is end value of last bin; all bins except for last bin are half-open ([a, b>), the last one is ([a, b]). The movieSlicer stitches individual frames together into a movie using ffmpeg. Thus, on instantiation it checks that ffmpeg is available and will raise and exception if not. This behavior can be overriden using force_no_ffmpeg = True (in order to create a movie later perhaps). """ # Check for ffmpeg. if not force_no_ffmpeg: try: fnull = open(os.devnull, "w") subprocess.check_call(["which", "ffmpeg"], stdout=fnull) except CalledProcessError: raise Exception( "Could not find ffmpeg on the system, so will not be able to create movie." " Use force_no_ffmpeg=True to override this error and create individual images." ) super().__init__(verbose=verbose, badval=badval) self.slice_col_name = slice_col_name self.columns_needed = [slice_col_name] self.bins = bins self.bin_min = bin_min self.bin_max = bin_max self.bin_size = bin_size self.cumulative = cumulative if slice_col_units is None: co = ColInfo() self.slice_col_units = co.get_units(self.slice_col_name) self.slicer_init = { "slice_col_name": self.slice_col_name, "slice_col_units": slice_col_units, "badval": badval, }
[docs] def setup_slicer(self, sim_data, maps=None): """ Set up bins in slicer. """ if self.slice_col_name is None: raise Exception("slice_col_name was not defined when slicer instantiated.") slice_col = sim_data[self.slice_col_name] # Set bin min/max values. if self.bin_min is None: self.bin_min = slice_col.min() if self.bin_max is None: self.bin_max = slice_col.max() # Give warning if bin_min = bin_max, and do something at # least slightly reasonable. if self.bin_min == self.bin_max: warnings.warn( "bin_min = bin_max (maybe your data is single-valued?). " "Increasing bin_max by 1 (or 2*bin_size, if bin_size set)." ) if self.bin_size is not None: self.bin_max = self.bin_max + 2 * self.bin_size else: self.bin_max = self.bin_max + 1 # Set bins. # Using bin_size. if self.bin_size is not None: if self.bins is not None: warnings.warn( "Both bin_size and bins have been set; Using bin_size %f only." % (self.bin_size) ) self.bins = np.arange( self.bin_min, self.bin_max + self.bin_size / 2.0, float(self.bin_size), "float", ) # Using bins value. else: # Bins was a sequence (np array or list) if hasattr(self.bins, "__iter__"): self.bins = np.sort(self.bins) # Or bins was a single value. else: if self.bins is None: self.bins = optimal_bins(slice_col, self.bin_min, self.bin_max) nbins = int(self.bins) self.bin_size = (self.bin_max - self.bin_min) / float(nbins) self.bins = np.arange( self.bin_min, self.bin_max + self.bin_size / 2.0, self.bin_size, "float", ) # Set shape / nbins to be one less than # of bins because # last binvalue is RH edge only self.nslice = len(self.bins) - 1 self.shape = self.nslice # Set slice_point metadata. self.slice_points["sid"] = np.arange(self.nslice) self.slice_points["bins"] = self.bins # Add metadata from maps. self._run_maps(maps) # Set up data slicing. self.sim_idxs = np.argsort(sim_data[self.slice_col_name]) simFieldsSorted = np.sort(sim_data[self.slice_col_name]) # "left" values are location where simdata == bin value # Note that this setup will place any the visits beyond # the last bin into the last bin. self.left = np.searchsorted(simFieldsSorted, self.bins[:-1], "left") self.left = np.concatenate( ( self.left, np.array( [ len(self.sim_idxs), ] ), ) ) # Set up _slice_sim_data method for this class. if self.cumulative: @wraps(self._slice_sim_data) def _slice_sim_data(islice): """ Slice sim_data on oneD sliceCol, to return relevant indexes for slice_point. """ # this is the important part. # The ids here define the pieces of data that get # passed on to subsequent slicers # cumulative version of 1D slicing idxs = self.sim_idxs[0 : self.left[islice + 1]] return { "idxs": idxs, "slice_point": { "sid": islice, "bin_left": self.bins[0], "bin_right": self.bins[islice + 1], }, } setattr(self, "_slice_sim_data", _slice_sim_data) else: @wraps(self._slice_sim_data) def _slice_sim_data(islice): """ Slice sim_data on oneD sliceCol, to return relevant indexes for slice_point. """ idxs = self.sim_idxs[self.left[islice] : self.left[islice + 1]] return { "idxs": idxs, "slice_point": { "sid": islice, "bin_left": self.bins[islice], "bin_right": self.bins[islice + 1], }, } setattr(self, "_slice_sim_data", _slice_sim_data)
[docs] def __eq__(self, other_slicer): """ Evaluate if slicers are equivalent. """ if isinstance(other_slicer, MovieSlicer): return np.array_equal(other_slicer.slice_points["bins"], self.slice_points["bins"]) else: return False
[docs] def make_movie( self, outfileroot, sliceformat, plot_type, fig_format, out_dir="Output", ips=10.0, fps=10.0, ): """Takes in metric and slicer metadata and calls ffmpeg to stitch together output files. """ if not os.path.isdir(out_dir): raise Exception("Cannot find output directory %s with movie input files." % (out_dir)) # make video # ffmpeg -r 30 -i [image names - FilterColors_%03d_SkyMap.png] -r 30 # -pix_fmt yuv420p -crf 18 -preset slower outfile callList = [ "ffmpeg", "-r", str(ips), "-i", os.path.join( out_dir, "%s_%s_%s.%s" % (outfileroot, sliceformat, plot_type, fig_format), ), "-vf", "pad=ceil(iw/2)*2:ceil(ih/2)*2", "-r", str(fps), "-pix_fmt", "yuv420p", "-crf", "18", "-preset", "slower", os.path.join( out_dir, "%s_%s_%s_%s.mp4" % (outfileroot, plot_type, str(ips), str(fps)), ), ] print("Attempting to call ffmpeg with:") print(" ".join(callList)) subprocess.check_call(callList) # make thumbnail gif callList = [ "ffmpeg", "-i", os.path.join( out_dir, "%s_%s_%s_%s.mp4" % (outfileroot, plot_type, str(ips), str(fps)), ), "-vf", "pad=ceil(iw/2)*2:ceil(ih/2)*2", "-t", str(10), "-r", str(10), os.path.join( out_dir, "%s_%s_%s_%s.gif" % (outfileroot, plot_type, str(ips), str(fps)), ), ] print("converting to animated gif with:") print(" ".join(callList)) subprocess.check_call(callList)