Source code for rubin_sim.maf.slicers.healpix_slicer

"""A slicer that uses a Healpix grid to calculate metric values
(at the center of each healpixel)."""

# Requires healpy
# See more documentation on healpy here
# http://healpy.readthedocs.org/en/latest/tutorial.html
# Also requires numpy (for histogram and power spectrum plotting)

__all__ = ("HealpixSlicer",)

import healpy as hp
import numpy as np
from astropy import units as u
from astropy.coordinates import SkyCoord

from rubin_sim.maf.plots.spatial_plotters import HealpixHistogram, HealpixSkyMap

from .base_spatial_slicer import BaseSpatialSlicer


[docs] class HealpixSlicer(BaseSpatialSlicer): """ A spatial slicer that evaluates pointings on a healpix-based grid. Note that a healpix slicer is intended to evaluate the sky on a spatial grid. Usually this grid will be something like RA as the lon_col and Dec as the lat_col. However, it could also be altitude and azimuth, in which case altitude as lat_col, and azimuth as lon_col. An additional alternative is to use HA/Dec, with lon_col=HA, lat_col=Dec. When plotting with RA/Dec, the default HealpixSkyMap can be used, corresponding to {'rot': (0, 0, 0), 'flip': 'astro'}. When plotting with alt/az, either the LambertSkyMap can be used (if Basemap is installed) or the HealpixSkyMap can be used with a modified plot_dict, {'rot': (90, 90, 90), 'flip': 'geo'}. When plotting with HA/Dec, only the HealpixSkyMap can be used, with a modified plot_dict of {'rot': (0, -30, 0), 'flip': 'geo'}. Parameters ---------- nside : `int`, optional The nside parameter of the healpix grid. Must be a power of 2. lon_col : `str`, optional Name of the longitude (RA equivalent) column to use from the input data. lat_col : `str`, optional Name of the latitude (Dec equivalent) column to use from the input data. lat_lon_deg : `bool`, optional Flag indicating whether the lat and lon values in the input data are in degrees (True) or radians (False). verbose : `bool`, optional Flag to indicate whether or not to write additional information to stdout during runtime. use_cache : `bool`, optional Flag allowing the user to indicate whether or not to cache (and reuse) metric results calculated with the same set of simulated data pointings. This can be safely set to True for slicers not using maps and will result in increased speed. When calculating metric results using maps, the map data at each individual ra/dec point may influence the metric results and so use_cache should be set to False. leafsize : `int`, optional Leafsize value for kdtree. Default 100. radius : `float`, optional Radius for matching in the kdtree. Equivalent to the radius of the FOV. Degrees. use_camera : `bool`, optional Flag to indicate whether to use the LSST camera footprint or not. camera_footprint_file : `str`, optional Name of the camera footprint map to use. Can be None, which will use the default footprint map. rot_sky_pos_col_name : `str`, optional Name of the rotSkyPos column in the input data. Only used if use_camera is True. Describes the orientation of the camera orientation compared to the sky. badval: `float`, optional The value to place use in place of bad data values. Use np.nan unless specifically needing other values. """ def __init__( self, nside=128, lon_col="fieldRA", lat_col="fieldDec", lat_lon_deg=True, verbose=True, use_cache=True, leafsize=100, radius=2.45, use_camera=True, camera_footprint_file=None, rot_sky_pos_col_name="rotSkyPos", badval=np.nan, ): super().__init__( verbose=verbose, lon_col=lon_col, lat_col=lat_col, badval=badval, radius=radius, leafsize=leafsize, use_camera=use_camera, camera_footprint_file=camera_footprint_file, rot_sky_pos_col_name=rot_sky_pos_col_name, lat_lon_deg=lat_lon_deg, ) # Valid values of nside are powers of 2. # nside=64 gives about 1 deg resolution # nside=256 gives about 13' resolution (~1 CCD) # nside=1024 gives about 3' resolution # Check validity of nside: if not (hp.isnsideok(nside)): raise ValueError("Valid values of nside are powers of 2.") self.nside = int(nside) self.pix_area = hp.nside2pixarea(self.nside) self.nslice = hp.nside2npix(self.nside) self.shape = self.nslice if self.verbose: print( "Healpix slicer using NSIDE=%d, " % (self.nside) + "approximate resolution %f arcminutes" % (hp.nside2resol(self.nside, arcmin=True)) ) # Set variables so slicer can be re-constructed self.slicer_init = { "nside": nside, "lon_col": lon_col, "lat_col": lat_col, "radius": radius, } self.use_cache = use_cache if use_cache: # use_cache set the size of the cache for the memoize function in # sliceMetric. bin_res = hp.nside2resol(nside) # Pixel size in radians # Set the cache size to be ~2x the circumference self.cache_size = int(np.round(4.0 * np.pi / bin_res)) # Set up slice_point metadata. self.slice_points["nside"] = nside self.slice_points["sid"] = np.arange(self.nslice) self.slice_points["ra"], self.slice_points["dec"] = self._pix2radec(self.slice_points["sid"]) c = SkyCoord(ra=self.slice_points["ra"] * u.rad, dec=self.slice_points["dec"] * u.rad).transform_to( "galactic" ) gall, galb = c.l.rad, c.b.rad self.slice_points["gall"] = gall self.slice_points["galb"] = galb # Set the default plotting functions. self.plot_funcs = [HealpixSkyMap, HealpixHistogram]
[docs] def __eq__(self, other_slicer): """Evaluate if two slicers are equivalent.""" # If the two slicers are both healpix slicers, check nsides value. result = False if isinstance(other_slicer, HealpixSlicer): if other_slicer.nside == self.nside: if other_slicer.lon_col == self.lon_col and other_slicer.lat_col == self.lat_col: if other_slicer.radius == self.radius: if other_slicer.use_camera == self.use_camera: if other_slicer.rotSkyPosColName == self.rotSkyPosColName: if np.all(other_slicer.shape == self.shape): if other_slicer.use_cache == self.use_cache: result = True return result
def _pix2radec(self, islice): """Given the pixel number / sliceID, return the RA/Dec of the pointing, in radians. """ # Calculate RA/Dec in RADIANS of pixel in this healpix slicer. # Note that ipix could be an array, # in which case RA/Dec values will be an array also. lat, ra = hp.pix2ang(self.nside, islice) # Move dec to +/- 90 degrees dec = np.pi / 2.0 - lat return ra, dec