Source code for rubin_sim.maf.metrics.surfb_metric

__all__ = ("SurfaceBrightLimitMetric",)

import warnings

import numpy as np

from rubin_sim.maf.utils import load_inst_zeropoints

from .base_metric import BaseMetric


def surface_brightness_limit_approx(
    zp,
    k,
    airmass,
    mu_sky,
    rn=8.8,
    pixscale=0.2,
    nsigma=3.0,
    t_exp=30.0,
    tot_area=100.0,
    mag_diff_warn=0.1,
):
    """Compute surface brightness limit in 3 limiting cases, return the
    brightest.

    Algerbra worked out in this technote:
    https://github.com/lsst-sims/smtn-016

    Parameters
    ---------
    zp : `float`
        Telescope zeropoint (mags)
    k : `float`
        Atmospheric extinction term
    airmass : `float`
        Airmass
    mu_sky : `float`
        Surface brightness of the sky (mag/sq arcsec)
    rn : `float` (8.8)
        Readnoise in electrons
    pixscale : `float` (0.2)
        Arcseconds per pixel
    nsigma : `float` (3)
        The SNR to demand
    t_exp : `float` (30.)
        Exposure time (seconds)
    tot_area : `float` (100)
        The total area measuring over (sq arcsec)
    mag_diff_warn : `float` (0.1)
        If the limiting cases are within mag_diff_warn, throw a warning
        that the surface brightness limit may be an overestimate.

    Returns
    -------
    surface brightness limit in mags/sq arcsec, aka the surface brightness that
    reaches SNR=nsigma when measured over tot_area.
    """

    a_pix = pixscale**2

    n_pix = tot_area / a_pix

    # Sky limited case
    mu_sky_lim = -1.25 * np.log10(nsigma**2 / (a_pix * t_exp * n_pix)) + 0.5 * mu_sky + 0.5 * zp - k * airmass

    # Source limited case
    # XXX--double check this algerbra. Pretty sure it's right now.
    mu_source_lim = -5 * np.log10(nsigma) + 2.5 * np.log10(n_pix * a_pix * t_exp) + zp - k * airmass

    # Readnoise limited case
    mu_rn_lim = -2.5 * np.log10(nsigma * rn / (t_exp * a_pix * n_pix**0.5)) + zp - k * airmass

    d1 = np.min(np.abs(mu_sky_lim - mu_source_lim))
    d2 = np.min(np.abs(mu_sky_lim - mu_rn_lim))
    d3 = np.min(np.abs(mu_rn_lim - mu_source_lim))

    if np.min([d1, d2, d3]) < mag_diff_warn:
        warnings.warn(
            "Limiting magnitudes in different cases are within %.3f mags, \
            result may be too optimistic by up 0.38 mags/sq arcsec."
            % mag_diff_warn
        )

    result = np.vstack([mu_sky_lim, mu_source_lim, mu_rn_lim])
    result = np.min(result, axis=0)

    return result


[docs] class SurfaceBrightLimitMetric(BaseMetric): """Gaussian limit, ignoring systematic errors in photometry Parameters ---------- pixscale : `float` (0.2) Pixelscale, Arcseconds per pixel nsigma : `float` (3) The detection limit (usuall 3 or 5) tot_area : `float` (100) Total sky area summed over, square arcseconds zpt : `dict` of `float` (None) telescope zeropoints. If None, computed from phot_utils k_atm : `dict` of `float` (None) Atmospheric extinction parameters. If None, computed from phot_utils readnoise : `float` (8.8) Readnoise in electrons """ def __init__( self, pixscale=0.2, nsigma=3.0, tot_area=100.0, filter_col="filter", units="mag/sq arcsec", airmass_col="airmass", exptime_col="visitExposureTime", metric_name="SurfaceBrightLimit", skybrightness_col="skyBrightness", nexp_col="numExposures", zpt=None, k_atm=None, readnoise=8.8, **kwargs, ): super().__init__( col=[filter_col, airmass_col, exptime_col, skybrightness_col, nexp_col], units=units, metric_name=metric_name, **kwargs, ) self.filter_col = filter_col self.airmass_col = airmass_col self.exptime_col = exptime_col self.skybrightness_col = skybrightness_col self.nexp_col = nexp_col self.readnoise = readnoise self.pixscale = pixscale self.nsigma = nsigma self.tot_area = tot_area # Compute default zeropoints if zpt is None: zp_inst, k_atm = load_inst_zeropoints() self.zpt = zp_inst self.k_atm = k_atm else: self.zpt = zpt self.k_atm = k_atm
[docs] def run(self, data_slice, slice_point): filtername = np.unique(data_slice[self.filter_col]) if np.size(filtername) > 1: ValueError("Can only coadd depth in single filter, got filters %s" % filtername) filtername = filtername[0] # Scale up readnoise if the visit was split into multiple snaps readnoise = self.readnoise * np.sqrt(data_slice[self.nexp_col]) sb_per_visit = surface_brightness_limit_approx( self.zpt[filtername], self.k_atm[filtername], data_slice[self.airmass_col], data_slice[self.skybrightness_col], rn=readnoise, pixscale=self.pixscale, nsigma=self.nsigma, t_exp=data_slice[self.exptime_col], tot_area=self.tot_area, ) coadd_sb_limit = 1.25 * np.log10(np.sum(10 ** (0.8 * sb_per_visit))) return coadd_sb_limit