__all__ = ("SurfaceBrightLimitMetric",)
import warnings
import numpy as np
from rubin_sim.maf.utils import load_inst_zeropoints
from .base_metric import BaseMetric
def surface_brightness_limit_approx(
zp,
k,
airmass,
mu_sky,
rn=8.8,
pixscale=0.2,
nsigma=3.0,
t_exp=30.0,
tot_area=100.0,
mag_diff_warn=0.1,
):
"""Compute surface brightness limit in 3 limiting cases, return the
brightest.
Algerbra worked out in this technote:
https://github.com/lsst-sims/smtn-016
Parameters
---------
zp : `float`
Telescope zeropoint (mags)
k : `float`
Atmospheric extinction term
airmass : `float`
Airmass
mu_sky : `float`
Surface brightness of the sky (mag/sq arcsec)
rn : `float` (8.8)
Readnoise in electrons
pixscale : `float` (0.2)
Arcseconds per pixel
nsigma : `float` (3)
The SNR to demand
t_exp : `float` (30.)
Exposure time (seconds)
tot_area : `float` (100)
The total area measuring over (sq arcsec)
mag_diff_warn : `float` (0.1)
If the limiting cases are within mag_diff_warn, throw a warning
that the surface brightness limit may be an overestimate.
Returns
-------
surface brightness limit in mags/sq arcsec, aka the surface brightness that
reaches SNR=nsigma when measured over tot_area.
"""
a_pix = pixscale**2
n_pix = tot_area / a_pix
# Sky limited case
mu_sky_lim = -1.25 * np.log10(nsigma**2 / (a_pix * t_exp * n_pix)) + 0.5 * mu_sky + 0.5 * zp - k * airmass
# Source limited case
# XXX--double check this algerbra. Pretty sure it's right now.
mu_source_lim = -5 * np.log10(nsigma) + 2.5 * np.log10(n_pix * a_pix * t_exp) + zp - k * airmass
# Readnoise limited case
mu_rn_lim = -2.5 * np.log10(nsigma * rn / (t_exp * a_pix * n_pix**0.5)) + zp - k * airmass
d1 = np.min(np.abs(mu_sky_lim - mu_source_lim))
d2 = np.min(np.abs(mu_sky_lim - mu_rn_lim))
d3 = np.min(np.abs(mu_rn_lim - mu_source_lim))
if np.min([d1, d2, d3]) < mag_diff_warn:
warnings.warn(
"Limiting magnitudes in different cases are within %.3f mags, \
result may be too optimistic by up 0.38 mags/sq arcsec."
% mag_diff_warn
)
result = np.vstack([mu_sky_lim, mu_source_lim, mu_rn_lim])
result = np.min(result, axis=0)
return result
[docs]
class SurfaceBrightLimitMetric(BaseMetric):
"""Gaussian limit, ignoring systematic errors in photometry
Parameters
----------
pixscale : `float` (0.2)
Pixelscale, Arcseconds per pixel
nsigma : `float` (3)
The detection limit (usuall 3 or 5)
tot_area : `float` (100)
Total sky area summed over, square arcseconds
zpt : `dict` of `float` (None)
telescope zeropoints. If None, computed from phot_utils
k_atm : `dict` of `float` (None)
Atmospheric extinction parameters. If None, computed from phot_utils
readnoise : `float` (8.8)
Readnoise in electrons
"""
def __init__(
self,
pixscale=0.2,
nsigma=3.0,
tot_area=100.0,
filter_col="filter",
units="mag/sq arcsec",
airmass_col="airmass",
exptime_col="visitExposureTime",
metric_name="SurfaceBrightLimit",
skybrightness_col="skyBrightness",
nexp_col="numExposures",
zpt=None,
k_atm=None,
readnoise=8.8,
**kwargs,
):
super().__init__(
col=[filter_col, airmass_col, exptime_col, skybrightness_col, nexp_col],
units=units,
metric_name=metric_name,
**kwargs,
)
self.filter_col = filter_col
self.airmass_col = airmass_col
self.exptime_col = exptime_col
self.skybrightness_col = skybrightness_col
self.nexp_col = nexp_col
self.readnoise = readnoise
self.pixscale = pixscale
self.nsigma = nsigma
self.tot_area = tot_area
# Compute default zeropoints
if zpt is None:
zp_inst, k_atm = load_inst_zeropoints()
self.zpt = zp_inst
self.k_atm = k_atm
else:
self.zpt = zpt
self.k_atm = k_atm
[docs]
def run(self, data_slice, slice_point):
filtername = np.unique(data_slice[self.filter_col])
if np.size(filtername) > 1:
ValueError("Can only coadd depth in single filter, got filters %s" % filtername)
filtername = filtername[0]
# Scale up readnoise if the visit was split into multiple snaps
readnoise = self.readnoise * np.sqrt(data_slice[self.nexp_col])
sb_per_visit = surface_brightness_limit_approx(
self.zpt[filtername],
self.k_atm[filtername],
data_slice[self.airmass_col],
data_slice[self.skybrightness_col],
rn=readnoise,
pixscale=self.pixscale,
nsigma=self.nsigma,
t_exp=data_slice[self.exptime_col],
tot_area=self.tot_area,
)
coadd_sb_limit = 1.25 * np.log10(np.sum(10 ** (0.8 * sb_per_visit)))
return coadd_sb_limit