Source code for rubin_sim.maf.metrics.string_count_metric
__all__ = ("StringCountMetric",)
from collections import Counter
import numpy as np
from .base_metric import BaseMetric
class Keylookerupper:
"""Helper object to unpack dictionary values as reduceFunction results."""
def __init__(self, key="blank", name=None):
self.key = key
self.__name__ = name
def __call__(self, indict):
return np.max(indict[self.key])
[docs]
class StringCountMetric(BaseMetric):
"""Count up the number of times each string appears in a column.
Dynamically builds reduce functions for each unique string value,
so summary stats can be named the same as strings in the
simData array without knowing the values of those strings ahead of time.
Parameters
----------
metric_name : `str`, opt
Name of the metric.
col : `str`, opt
Column name that has strings to look at.
percent : `bool`, opt
Normalize and return results as percents rather than raw count.
clip_end : `bool`
Clip if the end of a string if it ends with a comma and number.
"""
def __init__(
self, metric_name="stringCountMetric", col="filter", percent=False, clip_end=False, **kwargs
):
if percent:
units = "percent"
else:
units = "count"
self.percent = percent
cols = [col]
super().__init__(cols, metric_name, units=units, metric_dtype=object, **kwargs)
self.col = col
self.clip_end = clip_end
[docs]
def run(self, data_slice, slice_point=None):
# If we need to clip off trailing integer
if self.clip_end:
replace_col = []
for val in data_slice[self.col]:
if ", " in val:
chunks = val.split(", ")
if chunks[-1].isdigit():
new_val = ", ".join(chunks[0:-1])
replace_col.append(new_val)
else:
replace_col.append(val)
else:
replace_col.append(val)
data_slice[self.col] = replace_col
counter = Counter(data_slice[self.col])
# convert to a numpy array
lables = list(counter.keys())
# Numpy can't handle empty string as a dtype
lables = [x if x != "" else "blank" for x in lables]
metric_value = np.zeros(1, dtype=list(zip(lables, [float] * len(counter.keys()))))
for key in counter:
if key == "":
metric_value["blank"] = counter[key]
else:
metric_value[key] = counter[key]
if self.percent:
norm = sum(metric_value[0]) / 100.0
# Not sure I really like having to loop here,
# but the dtype is inflexible
for key in metric_value.dtype.names:
metric_value[key] = metric_value[key] / norm
# Now to dynamically set up the reduce functions
for i, key in enumerate(metric_value.dtype.names):
name = key
self.reduce_funcs[name] = Keylookerupper(key=key, name=name)
self.reduce_order[name] = i
return metric_value