Source code for rubin_sim.maf.metrics.sn_cadence_metric

__all__ = ("SNCadenceMetric",)

import numpy as np

import rubin_sim.maf.metrics as metrics


[docs] class SNCadenceMetric(metrics.BaseMetric): """ Metric to estimate the redshift limit for faint supernovae (x1,color) = (-2.0,0.2) Parameters ---------- list : `str`, optional Name of the columns used to estimate the metric coadd : `bool`, optional to make "coaddition" per night (uses snStacker) Default True lim_sn : `class`, optional Reference data used to estimate redshift values (interpolation) """ def __init__( self, metric_name="SNCadenceMetric", mjd_col="observationStartMJD", ra_col="fieldRA", dec_col="fieldDec", filter_col="filter", m5_col="fiveSigmaDepth", exptime_col="visitExposureTime", night_col="night", obsid_col="observationId", nexp_col="numExposures", vistime_col="visitTime", coadd=True, lim_sn=None, **kwargs, ): self.mjd_col = mjd_col self.m5_col = m5_col self.filter_col = filter_col self.ra_col = ra_col self.dec_col = dec_col self.exptime_col = exptime_col self.season_col = "season" self.night_col = night_col self.obsid_col = obsid_col self.nexp_col = nexp_col self.vistime_col = vistime_col cols = [ self.night_col, self.m5_col, self.filter_col, self.mjd_col, self.obsid_col, self.nexp_col, self.vistime_col, self.exptime_col, self.season_col, ] if coadd: cols += ["coadd"] super(SNCadenceMetric, self).__init__(col=cols, metric_name=metric_name, **kwargs) self.filter_names = np.array(["u", "g", "r", "i", "z", "y"]) self.lim_sn = lim_sn
[docs] def run(self, data_slice, slice_point=None): # Cut down to only include filters in correct wave range. good_filters = np.isin(data_slice["filter"], self.filter_names) data_slice = data_slice[good_filters] if data_slice.size == 0: return None data_slice.sort(order=self.mjd_col) r = [] field_ra = np.mean(data_slice[self.ra_col]) field_dec = np.mean(data_slice[self.dec_col]) band = np.unique(data_slice[self.filter_col])[0] sel = data_slice bins = np.arange(np.floor(sel[self.mjd_col].min()), np.ceil(sel[self.mjd_col].max()), 1.0) c, b = np.histogram(sel[self.mjd_col], bins=bins) if (c.mean() < 1.0e-8) | np.isnan(c).any() | np.isnan(c.mean()): cadence = 0.0 else: cadence = 1.0 / c.mean() # time_diff = sel[self.mjd_col][1:]-sel[self.mjd_col][:-1] r.append((field_ra, field_dec, band, np.mean(sel[self.m5_col]), cadence)) res = np.rec.fromrecords(r, names=["field_ra", "field_dec", "band", "m5_mean", "cadence_mean"]) zref = self.lim_sn.interp_griddata(res) if np.isnan(zref): zref = self.badval return zref