Source code for rubin_sim.maf.metrics.season_metrics

"""A group of metrics that work together to evaluate season characteristics
(length, number, etc).
In addition, these support the time delay metric for strong lensing.
"""

__all__ = (
    "find_season_edges",
    "SeasonLengthMetric",
    "CampaignLengthMetric",
    "MeanCampaignFrequencyMetric",
    "TdcMetric",
)

import numpy as np
from rubin_scheduler.utils import calc_season

from rubin_sim.phot_utils import DustValues

from .base_metric import BaseMetric


[docs] def find_season_edges(seasons): """Given the seasons, return the indexes of each start/end of the season. Parameters ---------- seasons : `np.ndarray`, (N,) Seasons, such as calculated by calc_season. Note that seasons should be sorted!! Returns ------- first, last : `np.ndarray`, (N,), `np.ndarray`, (N,) The indexes of the first and last date in the season. """ int_seasons = np.floor(seasons) # Get the unique seasons, so that we can separate each one season_list = np.unique(int_seasons) # Find the first and last observation of each season. first_of_season = np.searchsorted(int_seasons, season_list) last_of_season = np.searchsorted(int_seasons, season_list, side="right") - 1 return first_of_season, last_of_season
[docs] class SeasonLengthMetric(BaseMetric): """Calculate the length of LSST seasons, in days. Parameters ---------- min_exp_time : `float`, optional Minimum visit exposure time to count for a 'visit', in seconds. Default 20. reduce_func : function, optional Function that can operate on array-like structures. Typically numpy function. This reduces the season length in each season from 10 separate values to a single value. Default np.median. Returns ------- seasonlength : `float` The (reduceFunc) of the length of each season, in days. """ def __init__( self, mjd_col="observationStartMJD", exp_time_col="visitExposureTime", min_exp_time=16, reduce_func=np.median, metric_name="SeasonLength", **kwargs, ): units = "days" self.mjd_col = mjd_col self.exp_time_col = exp_time_col self.min_exp_time = min_exp_time self.reduce_func = reduce_func super().__init__( col=[self.mjd_col, self.exp_time_col], units=units, metric_name=metric_name, **kwargs )
[docs] def run(self, data_slice, slice_point): # Order data Slice/times and exclude visits which are too short. long = np.where(data_slice[self.exp_time_col] > self.min_exp_time) if len(long[0]) == 0: return self.badval data = np.sort(data_slice[long], order=self.mjd_col) # SlicePoints ra/dec are always in radians - # convert to degrees to calculate season seasons = calc_season(np.degrees(slice_point["ra"]), data[self.mjd_col]) first_of_season, last_of_season = find_season_edges(seasons) seasonlengths = data[self.mjd_col][last_of_season] - data[self.mjd_col][first_of_season] result = self.reduce_func(seasonlengths) return result
[docs] class CampaignLengthMetric(BaseMetric): """Calculate the number of seasons (roughly, years) a pointing is observed. This corresponds to the 'campaign length' for lensed quasar time delays. """ def __init__( self, mjd_col="observationStartMJD", exp_time_col="visitExposureTime", min_exp_time=20, **kwargs ): units = "" self.exp_time_col = exp_time_col self.min_exp_time = min_exp_time self.mjd_col = mjd_col super().__init__(col=[self.mjd_col, self.exp_time_col], units=units, **kwargs)
[docs] def run(self, data_slice, slice_point): # Order data Slice/times and exclude visits which are too short. long = np.where(data_slice[self.exp_time_col] > self.min_exp_time) if len(long[0]) == 0: return self.badval data = np.sort(data_slice[long], order=self.mjd_col) seasons = calc_season(np.degrees(slice_point["ra"]), data[self.mjd_col]) int_seasons = np.floor(seasons) count = len(np.unique(int_seasons)) return count
[docs] class MeanCampaignFrequencyMetric(BaseMetric): """Calculate the mean separation between nights, within a season - then the mean over the campaign. Calculate per season, to avoid any influence from season gaps. """ def __init__( self, mjd_col="observationStartMJD", exp_time_col="visitExposureTime", min_exp_time=20, night_col="night", **kwargs, ): self.mjd_col = mjd_col self.exp_time_col = exp_time_col self.min_exp_time = min_exp_time self.night_col = night_col units = "nights" super().__init__(col=[self.mjd_col, self.exp_time_col, self.night_col], units=units, **kwargs)
[docs] def run(self, data_slice, slice_point): # Order data Slice/times and exclude visits which are too short. long = np.where(data_slice[self.exp_time_col] > self.min_exp_time) if len(long[0]) == 0: return self.badval data = np.sort(data_slice[long], order=self.mjd_col) # SlicePoints ra/dec are always in radians - # convert to degrees to calculate season seasons = calc_season(np.degrees(slice_point["ra"]), data[self.mjd_col]) first_of_season, last_of_season = find_season_edges(seasons) season_means = np.zeros(len(first_of_season), float) for i, (first, last) in enumerate(zip(first_of_season, last_of_season)): if first < last: n = data[self.night_col][first : last + 1] delta_nights = np.diff(np.unique(n)) if len(delta_nights) > 0: season_means[i] = np.mean(delta_nights) return np.mean(season_means)
[docs] class TdcMetric(BaseMetric): """Calculate the Time Delay Challenge metric, as described in Liao et al 2015 (https://arxiv.org/pdf/1409.1254.pdf). This combines the MeanCampaignFrequency/MeanNightSeparation, the SeasonLength, and the CampaignLength metrics above, but rewritten to calculate season information only once. cad_norm = in units of days sea_norm = in units of months camp_norm = in units of years This metric also adds a requirement to achieve limiting magnitudes after galactic dust extinction, in various bandpasses, in order to exclude visits which are not useful for detecting quasars (due to being short or having high sky brightness, etc.) and to reject regions with high galactic dust extinction. Parameters ---------- mjd_col : `str`, optional Column name for mjd. Default observationStartMJD. night_col : `str`, optional Column name for night. Default night. filter_col : `str`, optional Column name for filter. Default filter. m5_col : `str`, optional Column name for five-sigma depth. Default fiveSigmaDepth. mag_cuts : `dict`, optional Dictionary with filtername:mag limit (after dust extinction). Default None in kwarg. Defaults set within metric: {'u': 22.7, 'g': 24.1, 'r': 23.7, 'i': 23.1, 'z': 22.2, 'y': 21.4} metricName : `str`, optional Metric Name. Default TDC. cad_norm : `float`, optional Cadence normalization constant, in units of days. Default 3. sea_norm : `float`, optional Season normalization constant, in units of months. Default 4. camp_norm : `float`, optional Campaign length normalization constant, in units of years. Default 5. badval : `float`, optional Return this value instead of the dictionary for bad points. Returns ------- TDCmetrics : `dict` Dictionary of values for {'rate', 'precision', 'accuracy'} at this point in the sky. """ def __init__( self, mjd_col="observationStartMJD", night_col="night", filter_col="filter", m5_col="fiveSigmaDepth", mag_cuts=None, metric_name="TDC", cad_norm=3.0, sea_norm=4.0, camp_norm=5.0, badval=-999, **kwargs, ): # Save the normalization values. self.cad_norm = cad_norm self.sea_norm = sea_norm self.camp_norm = camp_norm self.mjd_col = mjd_col self.m5_col = m5_col self.night_col = night_col self.filter_col = filter_col if mag_cuts is None: self.mag_cuts = { "u": 22.7, "g": 24.1, "r": 23.7, "i": 23.1, "z": 22.2, "y": 21.4, } else: self.mag_cuts = mag_cuts if not isinstance(self.mag_cuts, dict): raise Exception("mag_cuts should be a dictionary") # Set up dust map requirement maps = ["DustMap"] # Set the default wavelength limits for the lsst filters. # These are approximately correct. dust_properties = DustValues() self.ax1 = dust_properties.ax1 super().__init__( col=[self.mjd_col, self.m5_col, self.night_col, self.filter_col], badval=badval, maps=maps, metric_name=metric_name, units="%s" % ("%"), **kwargs, )
[docs] def run(self, data_slice, slice_point): # Calculate dust-extinction limiting magnitudes for each visit. filterlist = np.unique(data_slice[self.filter_col]) m5_dust = np.zeros(len(data_slice), float) for f in filterlist: match = np.where(data_slice[self.filter_col] == f) a_x = self.ax1[f] * slice_point["ebv"] m5_dust[match] = data_slice[self.m5_col][match] - a_x m5_dust[match] = np.where(m5_dust[match] > self.mag_cuts[f], m5_dust[match], -999) idxs = np.where(m5_dust > -998) if len(idxs[0]) == 0: return self.badval data = np.sort(data_slice[idxs], order=self.mjd_col) # SlicePoints ra/dec are always in radians - # convert to degrees to calculate season seasons = calc_season(np.degrees(slice_point["ra"]), data[self.mjd_col]) int_seasons = np.floor(seasons) first_of_season, last_of_season = find_season_edges(seasons) # Campaign length camp = len(np.unique(int_seasons)) # Season length seasonlengths = data[self.mjd_col][last_of_season] - data[self.mjd_col][first_of_season] sea = np.median(seasonlengths) # Convert to months sea = sea / 30.0 # Campaign frequency / mean night separation season_means = np.zeros(len(first_of_season), float) for i, (first, last) in enumerate(zip(first_of_season, last_of_season)): n = data[self.night_col][first : last + 1] delta_nights = np.diff(np.unique(n)) if len(delta_nights) > 0: season_means[i] = np.mean(delta_nights) cad = np.mean(season_means) # Evaluate precision and accuracy for TDC if sea == 0 or cad == 0 or camp == 0: return self.badval else: accuracy = 0.06 * (self.sea_norm / sea) * (self.camp_norm / camp) ** (1.1) precision = ( 4.0 * (cad / self.cad_norm) ** (0.7) * (self.sea_norm / sea) ** (0.3) * (self.camp_norm / camp) ** (0.6) ) rate = ( 30.0 * (self.cad_norm / cad) ** (0.4) * (sea / self.sea_norm) ** (0.8) * (self.camp_norm / camp) ** (0.2) ) return { "accuracy": accuracy, "precision": precision, "rate": rate, "cadence (days)": cad, "season (months)": sea, "campaign": camp, }
def reduce_accuracy(self, metric_value): return metric_value["accuracy"] def reduce_precision(self, metric_value): return metric_value["precision"] def reduce_rate(self, metric_value): return metric_value["rate"] def reduce_cadence(self, metric_value): return metric_value["cadence (days)"] def reduce_season(self, metric_value): return metric_value["season (months)"] def reduce_campaign(self, metric_value): return metric_value["campaign"]