import numpy as np
from rubin_scheduler.utils import SURVEY_START_MJD, Site, SysEngVals, calc_season
from .base_metric import BaseMetric
__all__ = ["TemplateTime"]
[docs]
class TemplateTime(BaseMetric):
"""Find the time at which we expect to hit incremental template
availability.
Note that there are some complications to real template generation
that make this an approximation and not an exact answer -- one aspect is
that templates are generated in `patches` and not per pixel. However, it
may be possible to generate parts of these patches at about 5 arcsecond
scales, which implies running with a healpix slicer at nside=512 or 1024.
Parameters
----------
n_images_in_template : `int`, opt
Number of qualified visits required for template generation.
Default 3.
seeing_threshold : `float`, opt
The threshold for counting "good seeing" images, in arcseconds.
This is at zenith, at 500 nm - it will be scaled to the slicer's
best possible value at the relevant declination and in the template's
bandpass.
seeing_percentile : `float`, opt
When evaluating the local seeing distribution, if there
`n_images_in_template` better than `seeing_percentile`, go ahead
and make the template. This allows template creation in locations
with poor seeing compared to
Maximum percentile seeing to allow in the qualified images (0 - 100).
The maximum of seeing_threshold (scaled) or the seeing at
seeing_percentil will be used as the cutoff for template creation.
m5_threshold : `float` or None, opt
The threshold for counting an image as "good m5". This is also
scaled to the expected best minimum airmass/seeing given the
slicepoints' declination.
m5_percentile : `float`, opt
Maximum percentile m5 to allow in the qualified images (0 - 100).
The minimum of m5_threshold (scaled) or m5 resulting from
m5_percentile will be used as the cutoff for template creation.
seeing_col : `str`, opt
Name of the seeing column to use.
m5_col : `str`, opt
Name of the five sigma depth columns.
night_col : `str`, opt
Name of the column describing the night of the visit.
mjd_col : `str`, opt
Name of column describing time of the visit
band_col : `str`, opt
Name of column describing band
mjd_start : `float`, opt
The starting time of the survey, to use to count "nights before
template creation", etc.
site_latiude_rad : `float`, opt
The latitude of the site, used to determine minimum best airmass.
"""
def __init__(
self,
n_images_in_template=3,
seeing_threshold=0.8,
m5_threshold=None,
seeing_percentile=50,
m5_percentile=50,
seeing_col="seeingFwhmEff",
m5_col="fiveSigmaDepth",
night_col="night",
mjd_col="observationStartMJD",
band_col="band",
mjd_start=None,
filter_col=None,
site_latitude_rad=Site("LSST").latitude_rad,
**kwargs,
):
self.n_images_in_template = n_images_in_template
self.seeing_threshold = seeing_threshold
if m5_threshold is None:
# Update these - currently just m5 defaults for v1.9
m5_threshold = {"u": 23.7, "g": 24.9, "r": 24.5, "i": 24.1, "z": 23.5, "y": 22.5}
self.m5_threshold = m5_threshold
self.seeing_percentile = seeing_percentile
self.m5_percentile = m5_percentile
self.seeing_col = seeing_col
self.m5_col = m5_col
self.night_col = night_col
self.mjd_col = mjd_col
self.band_col = band_col
if filter_col is not None:
self.band_col = filter_col
if "metric_name" in kwargs:
self.metric_name = kwargs["metric_name"]
del kwargs["metric_name"]
else:
self.metric_name = "TemplateTime"
if mjd_start is None:
self.mjd_start = SURVEY_START_MJD
else:
self.mjd_start = mjd_start
self.site_latitude_rad = site_latitude_rad
sev = SysEngVals()
self.eff_wavelens = dict([(b, sev.eff_wavelengths[b]) for b in "ugrizy"])
self.extinction_coeffs = {
"u": -0.46,
"g": -0.21,
"r": -0.12,
"i": -0.07,
"z": -0.06,
"y": -0.10,
}
super().__init__(
col=[self.seeing_col, self.m5_col, self.night_col, self.mjd_col, self.band_col],
metric_name=self.metric_name,
units="days",
**kwargs,
)
[docs]
def run(self, data_slice, slice_point):
result = {}
# Bail if not enough visits at all
if len(data_slice) < self.n_images_in_template:
return self.badval
# Check that the visits are sorted in time
data_slice.sort(order=self.mjd_col)
min_z_possible = np.abs(slice_point["dec"] - self.site_latitude_rad)
min_airmass_possible = 1.0 / np.cos(min_z_possible)
best_seeing_possible = self.seeing_threshold * np.power(min_airmass_possible, 0.6)
current_band = np.unique(data_slice[self.band_col])[0]
best_seeing_possible = best_seeing_possible * np.power(500 / self.eff_wavelens[current_band], 0.3)
percentile_seeing = np.percentile(data_slice[self.seeing_col], self.seeing_percentile)
bench_seeing = np.max([best_seeing_possible, percentile_seeing])
try:
m5_threshold = self.m5_threshold[current_band]
except TypeError:
m5_threshold = self.m5_threshold
best_m5 = (
m5_threshold
- self.extinction_coeffs[current_band] * (1 - min_airmass_possible)
+ 2.5 * np.log10(self.seeing_threshold / best_seeing_possible)
)
percentile_m5 = np.percentile(data_slice[self.m5_col], 100 - self.m5_percentile)
bench_m5 = np.min([best_m5, percentile_m5])
seeing_ok = np.where(data_slice[self.seeing_col] <= bench_seeing, True, False)
m5_ok = np.where(data_slice[self.m5_col] >= bench_m5, True, False)
ok_template_input = np.where(seeing_ok & m5_ok)[0]
if (
len(ok_template_input) < self.n_images_in_template
): # If seeing_ok and/or m5_ok are "false", returned as bad value
return self.badval
idx_template_created = ok_template_input[
self.n_images_in_template - 1
] # Last image needed for template
idx_template_inputs = ok_template_input[: self.n_images_in_template] # Images included in template
night_template_created = data_slice[self.night_col][idx_template_created]
frac_into_season_template_created = calc_season(
np.degrees(slice_point["ra"]),
data_slice[self.mjd_col][idx_template_created],
mjd_start=self.mjd_start,
)
where_template = (
data_slice[self.night_col] > night_template_created
) # of later images where we have a template
n_images_with_template = np.sum(where_template)
template_m5 = 1.25 * np.log10(np.sum(10.0 ** (0.8 * data_slice[self.m5_col][idx_template_inputs])))
# derive variance-weighted PSF width
# 1. normalize the weights
template_f0 = np.sqrt(np.sum(25 * 10 ** (0.8 * data_slice[self.m5_col][idx_template_inputs])))
# 2. compute per-input noise
image_noise = template_f0 / 5 * 10 ** (-0.4 * data_slice[self.m5_col])
# 3. used variance-weighted sum of squares to derive template seeing
template_seeing = np.sqrt(
np.sum(
(data_slice[self.seeing_col][idx_template_inputs] / image_noise[idx_template_inputs]) ** 2.0
)
)
delta_m5 = -2.5 * np.log10(np.sqrt(1.0 + 10 ** (-0.8 * (template_m5 - data_slice[self.m5_col]))))
diff_m5s = data_slice[self.m5_col] + delta_m5
n_alerts_per_diffim = 1e4 * 10 ** (0.6 * (diff_m5s - 24.7))
result["bench_seeing"] = bench_seeing
result["bench_m5"] = bench_m5
result["night_template_created"] = night_template_created
result["frac_into_season_template_created"] = frac_into_season_template_created
result["n_images_until_template"] = idx_template_created + 1
result["n_images_with_template"] = n_images_with_template
result["template_m5"] = template_m5
result["template_seeing"] = template_seeing
result["total_alerts"] = np.sum(n_alerts_per_diffim[where_template])
result["template_input_m5s"] = data_slice[self.m5_col][idx_template_inputs]
result["template_input_seeing"] = data_slice[self.seeing_col][idx_template_inputs]
result["fraction_better_template_seeing"] = np.sum(
(data_slice[self.seeing_col][where_template] > template_seeing)
) / np.sum(where_template)
result["diffim_lc"] = {
"mjd": data_slice[self.mjd_col][where_template],
"night": data_slice[self.night_col][where_template],
"band": data_slice[self.band_col][where_template],
"diff_m5": diff_m5s[where_template],
"science_m5": data_slice[self.m5_col][where_template],
"template_m5": template_m5 * np.ones(np.sum(where_template)),
"science_seeing": data_slice[self.seeing_col][where_template],
"template_seeing": template_seeing * np.ones(np.sum(where_template)),
"n_alerts": n_alerts_per_diffim[where_template],
}
return result
def reduce_night_template_created(self, metric_val): # returns night of template creation
return metric_val["night_template_created"]
def reduce_n_images_until_template(
self, metric_val
): # returns number of images needed to complete template
return metric_val["n_images_until_template"]
def reduce_n_images_with_template(self, metric_val): # returns number of images with a template
return metric_val["n_images_with_template"]
def reduce_template_m5(self, metric_val): # calculated coadded m5 of resulting template
return metric_val["template_m5"]
def reduce_template_seeing(self, metric_val): # calculated seeing of resulting template
return metric_val["template_seeing"]
def reduce_fraction_better_template_seeing(self, metric_val): # calculated seeing of resulting template
return metric_val["fraction_better_template_seeing"]
def reduce_total_alerts(self, metric_val):
return metric_val["total_alerts"]
def reduce_frac_into_season(self, metric_val):
return metric_val["frac_into_season_template_created"]