Source code for rubin_sim.maf.metrics.crowding_metric

__all__ = ("CrowdingM5Metric", "CrowdingMagUncertMetric", "NstarsMetric")

import healpy as hp
import numpy as np
from scipy.interpolate import interp1d

from rubin_sim.maf.metrics import BaseMetric

# Originally contributed by Knut Olson (@knutago).


def _comp_crowd_error(mag_vector, lum_func, seeing, single_mag=None):
    """
    Compute the photometric crowding error given the luminosity
    function and best seeing.

    Equation from Olsen, Blum, & Rigaut 2003, AJ, 126, 452

    Parameters
    ----------
    mag_vector : `np.array` (N,)
        Stellar magnitudes.
    lum_func : `np.array` (N,)
        Stellar luminosity function.
    seeing : `float`
        The best seeing conditions.
        Assuming forced-photometry can use the best seeing conditions
        to help with confusion errors.
    single_mag : `float` or None
        If single_mag is None, the crowding error is calculated
        for each mag in mag_vector. If single_mag is a float,
        the crowding error is interpolated to that single value.

    Returns
    -------
    mag_uncert : `np.array` (N,)
        Magnitude uncertainties.
    """
    # Our saved luminosity functions are cumulative,
    # so we must here convert to differential
    lum_func = np.diff(lum_func)
    mag_vector = mag_vector[1:]
    lum_area_arcsec = 3600.0**2
    lum_vector = 10 ** (-0.4 * mag_vector)
    coeff = np.sqrt(np.pi / lum_area_arcsec) * seeing / 2.0
    my_int = (np.add.accumulate((lum_vector**2 * lum_func)[::-1]))[::-1]
    temp = np.sqrt(my_int) / lum_vector
    if single_mag is not None:
        interp = interp1d(mag_vector, temp)
        temp = interp(single_mag)
    crowd_error = coeff * temp
    return crowd_error


[docs] class CrowdingM5Metric(BaseMetric): """Calculate the magnitude at which the photometric error exceeds the crowding error threshold. Parameters ---------- crowding_error : `float`, optional The magnitude uncertainty from crowding in magnitudes. Default 0.1 mags. filtername : `str`, optional The bandpass in which to calculate the crowding limit. Default r. seeing_col : `str`, optional The name of the seeing column. m5Col : `str`, optional The name of the m5 depth column. maps : `list` [`str`], optional Names of maps required for the metric. Returns ------- mag : `float` The magnitude of a star which has a photometric error of `crowding_error` """ def __init__( self, crowding_error=0.1, filtername="r", seeing_col="seeingFwhmGeom", metric_name=None, maps=["StellarDensityMap"], **kwargs, ): cols = [seeing_col] units = "mag" self.crowding_error = crowding_error self.filtername = filtername self.seeing_col = seeing_col if metric_name is None: metric_name = "Crowding to Precision %.2f" % (crowding_error) super().__init__(col=cols, maps=maps, units=units, metric_name=metric_name, **kwargs)
[docs] def run(self, data_slice, slice_point=None): # Set mag_vector to the same length as starLumFunc # (lower edge of mag bins) mag_vector = slice_point[f"starMapBins_{self.filtername}"][1:] # Pull up density of stars at this point in the sky lum_func = slice_point[f"starLumFunc_{self.filtername}"] # Calculate the crowding error using the best seeing value # (in any filter?) crowd_error = _comp_crowd_error(mag_vector, lum_func, seeing=min(data_slice[self.seeing_col])) # Locate at which point crowding error is greater than user-defined # limit above_crowd = np.where(crowd_error >= self.crowding_error)[0] if np.size(above_crowd) == 0: result = max(mag_vector) else: crowd_mag = mag_vector[max(above_crowd[0] - 1, 0)] result = crowd_mag return result
[docs] class NstarsMetric(BaseMetric): """Calculate the number of stars detectable above some uncertainty limit, taking image depth and crowding into account. Parameters ---------- crowding_error : `float`, opt The magnitude uncertainty from crowding in magnitudes. Default 0.1 mags. filtername : `str`, opt The bandpass in which to calculate the crowding limit. Default r. seeing_col : `str`, opt The name of the seeing column. m5_col : `str`, opt The name of the m5 depth column. maps : `list` [`str`], opt Names of maps required for the metric. ignore_crowding : `bool`, opt Ignore the crowding limit. Returns ------- nstars : `float` The number of stars above the error limit. """ def __init__( self, crowding_error=0.1, filtername="r", seeing_col="seeingFwhmGeom", m5_col="fiveSigmaDepth", metric_name=None, maps=["StellarDensityMap"], ignore_crowding=False, **kwargs, ): cols = [seeing_col, m5_col] units = "N stars" self.crowding_error = crowding_error self.m5_col = m5_col self.filtername = filtername self.seeing_col = seeing_col self.ignore_crowding = ignore_crowding if metric_name is None: metric_name = "N stars to Precision %.2f" % (crowding_error) super().__init__(col=cols, maps=maps, units=units, metric_name=metric_name, **kwargs)
[docs] def run(self, data_slice, slice_point=None): pix_area = hp.nside2pixarea(slice_point["nside"], degrees=True) # Set mag_vector to the same length as starLumFunc # (lower edge of mag bins) mag_vector = slice_point[f"starMapBins_{self.filtername}"][1:] # Pull up density of stars at this point in the sky lum_func = slice_point[f"starLumFunc_{self.filtername}"] # Calculate the crowding error using the best seeing value # (in any filter?) crowd_error = _comp_crowd_error(mag_vector, lum_func, seeing=min(data_slice[self.seeing_col])) # Locate at which point crowding error is greater than # user-defined limit above_crowd = np.where(crowd_error >= self.crowding_error)[0] if np.size(above_crowd) == 0: crowd_mag = max(mag_vector) else: crowd_mag = mag_vector[max(above_crowd[0] - 1, 0)] # Compute the coadded depth, and the mag where that depth # hits the error specified coadded_depth = 1.25 * np.log10(np.sum(10.0 ** (0.8 * data_slice[self.m5_col]))) mag_limit = -2.5 * np.log10(1.0 / (self.crowding_error * (1.09 * 5))) + coadded_depth # Use the shallower depth, crowding or coadded if self.ignore_crowding: min_mag = mag_limit else: min_mag = np.min([crowd_mag, mag_limit]) # Interpolate to the number of stars result = ( np.interp( min_mag, slice_point[f"starMapBins_{self.filtername}"][1:], slice_point[f"starLumFunc_{self.filtername}"], ) * pix_area ) return result
[docs] class CrowdingMagUncertMetric(BaseMetric): """Calculate the mean uncertainty in magnitude due to crowding. Parameters ---------- rmag : `float` The magnitude of the star to consider. Returns ------- mag_uncert : `float` The uncertainty in magnitudes caused by crowding for a star of rmag. """ def __init__( self, rmag=20.0, seeing_col="seeingFwhmGeom", units="mag", metric_name=None, filtername="r", maps=["StellarDensityMap"], **kwargs, ): self.filtername = filtername self.seeing_col = seeing_col self.rmag = rmag if metric_name is None: metric_name = "CrowdingError at %.2f" % (rmag) super().__init__(col=[seeing_col], maps=maps, units=units, metric_name=metric_name, **kwargs)
[docs] def run(self, data_slice, slice_point=None): mag_vector = slice_point[f"starMapBins_{self.filtername}"][1:] lum_func = slice_point[f"starLumFunc_{self.filtername}"] # Magnitude uncertainty given crowding # Use minimum here, however this may not be appropriate in all cases. # (minimum makes value here match MagCrowding above, however # the minimum seeing could also correlate with poor m5 values) # Likely there should be some comparison between errors from crowding # and errors from photometric noise that we're just not doing. dmag_crowd = _comp_crowd_error( mag_vector, lum_func, min(data_slice[self.seeing_col]), single_mag=self.rmag ) result = np.mean(dmag_crowd) return result