Source code for rubin_sim.maf.maf_contrib.xrb_metrics

__all__ = ("XrbLc", "XRBPopMetric", "generate_xrb_pop_slicer")

import numpy as np
from rubin_scheduler.data import get_data_dir
from rubin_scheduler.utils import SURVEY_START_MJD
from scipy.stats import loguniform

from rubin_sim.maf.utils import m52snr
from rubin_sim.phot_utils import DustValues

from ..metrics import BaseMetric
from ..slicers import UserPointsSlicer


[docs] class XrbLc: """Synthesize XRB outburst lightcurves.""" def __init__(self, seed=42): dust_properties = DustValues() self.ax1 = dust_properties.ax1 self.rng = np.random.default_rng(seed)
[docs] def lmxb_abs_mags(self, size=1): """Return LMXB absolute magnitudes per LSST filter. Absolute magnitude relation is taken from Casares 2018 (2018MNRAS.473.5195C) Colors are taken from M. Johnson+ 2019 (2019MNRAS.484...19J) Parameters ---------- size : `int` Number of samples to generate. Returns ------- abs_mags : `list` [`dict`] Absolute magnitudes for each LSST filter. Porbs: `array` [`float`] Randomized orbital periods in days """ # Derive random orbital periods from the sample in Casares 18 Table 4 # Since there are significant outliers from a single Gaussian sample, # take random choices with replacement, then perturb them fractionally catalog__porb = np.array( [ 33.85, 6.4713, 2.5445, 1.7557, 1.5420, 0.5213, 0.4326, 0.3441, 0.3230, 0.3205, 0.2852, 0.2740, 0.2122, 0.1699, 0.1352, 0.117, 0.1006, ] ) sample__porbs = self.rng.choice(catalog__porb, size=size) sample__porbs *= self.rng.uniform(low=0.5, high=1.5, size=size) # lmxb_abs_mag_r = 4.6 # johnson+18 # Casares 18 lmxb_abs_mags_r = 4.64 - 3.69 * np.log10(sample__porbs) return [ { "u": lmxb_abs_mag_r + 4.14, "g": lmxb_abs_mag_r + 3.24, "r": lmxb_abs_mag_r, "i": lmxb_abs_mag_r + 0.33, "z": lmxb_abs_mag_r + 1.05, "y": lmxb_abs_mag_r + 2.36, } for lmxb_abs_mag_r in lmxb_abs_mags_r ], sample__porbs
[docs] def outburst_params(self, size=1): """Return a parameters at random characterizing the outburst. Uses distributions from Chen, Shrader, & Livio 1997 (ApJ 491, 312). Returns ------- params : `list` [`dict`] Rise, decay, and amplitude parameters. """ # rise timescale (Fig. 11): 50% 1-2 day lognormal, # 50% loguniform 0.5-50 days flip = self.rng.uniform(size=size) w = flip > 0.5 tau_rise = np.zeros(size) * np.nan tau_rise[w] = loguniform.rvs(0.5, 50, size=np.sum(w)) tau_rise[~w] = self.rng.lognormal(0, 0.2, size=np.sum(~w)) + 0.3 # amplitude = rng.lognormal(9,1,size=1)[0] # delta_mag = -2.5 * np.log10(amplitude) # The Chen+ 10**4 X-ray flux amplitudes imply -10 optical delta mags, # which are generally larger than observed. # We'll use a fixed -6 delta mag for simplicity delta_mag = -6 amplitude = 10 ** (-0.4 * delta_mag) * np.ones(size) tau_decay = self.rng.lognormal(2.9, 0.65, size=size) duration = (tau_rise + tau_decay) + np.log(amplitude) abs_mags, porbs = self.lmxb_abs_mags(size=size) return [ { "tau_rise": tr, "tau_decay": td, "amplitude": amp, "outburst_duration": dur, "abs_mag": abs_mag, "orbital_period": Porb, } for (tr, td, amp, dur, abs_mag, Porb) in zip( tau_rise, tau_decay, amplitude, duration, abs_mags, porbs ) ]
[docs] def fred(self, t, amplitude, tau_rise, tau_decay): """Fast-rise, exponential decay function. Amplitude is defined at the peak time = sqrt(tau_rise*tau_decay). See e.g., Tarnopolski 2021 for discussion. Parameters ---------- t : `array` [`float`] The times relative to the start of the outburst amplitude : `float` Peak amplitude tau_rise : `float` E-folding time for the rise tau_decay : `float` E-folding time for the decay """ return amplitude * np.exp(2 * np.sqrt(tau_rise / tau_decay)) * np.exp(-tau_rise / t - t / tau_decay)
[docs] def lightcurve(self, t, filtername, params): """Generate an XRB outburst lightcurve for given times and a single filter. Uses a simple fast-rise, exponential decay with parameters taken from Chen, Shrader, & Livio 1997 (ApJ 491, 312). For now we ignore the late time linear decay (Tetarenko+2018a,b, and references therein.) Parameters ---------- t : `array` [`float`] The times relative to the start of the outburst filtername : `str` The filter. one of ugrizy params : `dict` parameters for the FRED lightcurve. Returns ------- lc : `array` Magnitudes of the outburst at the specified times in the given filter """ # fill lightcurve with nondetections lc = np.ones(len(t)) * 99 # FRED woutburst = (t >= 0) & (t <= params["outburst_duration"]) if np.sum(woutburst): lc[woutburst] = params["abs_mag"][filtername] + -2.5 * np.log10( self.fred( t[woutburst], params["amplitude"], params["tau_rise"], params["tau_decay"], ) ) return lc
[docs] def detectable_duration(self, params, ebv, distance): """Determine time range an outburst is detectable with perfect sampling. Does not consider visibility constraints. Parameters ---------- params : `dict` lightcurve parameters for XrbLc ebv : `float` E(B-V) distance : `float` distance in kpc Returns ---------- visible_start_time : `float` first time relative to outburst start that the outburst could be detected visible_end_time : `float` last time relative to outburst start that the outburst could be detected """ nmodelt = 10000 t = np.linspace(0, params["outburst_duration"], nmodelt) lsst_single_epoch_depth = { "u": 23.9, "g": 25.0, "r": 24.7, "i": 24.0, "z": 23.3, "y": 22.1, } visible_start_time = np.inf visible_end_time = -np.inf for filtername in ["u", "g", "r", "i", "z", "y"]: mags = self.lightcurve(t, filtername, params) # Apply dust extinction on the light curve a_x = self.ax1[filtername] * ebv mags += a_x distmod = 5 * np.log10(distance * 1.0e3) - 5.0 mags += distmod wdetectable = np.where(mags <= lsst_single_epoch_depth[filtername])[0] if len(wdetectable) == 0: continue if t[wdetectable[0]] < visible_start_time: visible_start_time = t[wdetectable[0]] if t[wdetectable[-1]] >= visible_end_time: visible_end_time = t[wdetectable[-1]] if np.isinf(visible_start_time): return np.nan, np.nan return visible_start_time, visible_end_time
[docs] class XRBPopMetric(BaseMetric): """Evaluate whether a given XRB would be detectable. Includes a variety of detection criteria options, including if the XRB is possible to detect, if it is detected at least pts_needed times, or if it is detected pts_early times within t_early days of the start of the outburst. Parameters ---------- pts_needed : `int`, opt Minimum number of detections, for simple `detected` option. mjd0 : `float`, opt Start of survey. output_lc : `bool`, opt If True, output lightcurve points. If False, just return metric values. """ def __init__( self, metric_name="XRBPopMetric", mjd_col="observationStartMJD", m5_col="fiveSigmaDepth", filter_col="filter", night_col="night", pts_needed=2, pts_early=2, t_early=7, mjd0=SURVEY_START_MJD, output_lc=False, badval=-666, **kwargs, ): # maps = ["DustMap"] self.mjd_col = mjd_col self.m5_col = m5_col self.filter_col = filter_col self.night_col = night_col self.pts_needed = pts_needed self.pts_early = pts_early self.t_early = t_early # `bool` variable, if True the light curve will be exported self.output_lc = output_lc self.lightcurves = XrbLc() self.mjd0 = mjd0 dust_properties = DustValues() self.ax1 = dust_properties.ax1 cols = [self.mjd_col, self.m5_col, self.filter_col, self.night_col] super(XRBPopMetric, self).__init__( col=cols, units="Detected, 0 or 1", metric_name=metric_name, # maps=maps, badval=badval, **kwargs, ) self.comment = "Number or characterization of XRBs." def _ever_detect(self, where_detected): """Simple detection criteria: detect at least a certain number of times. """ # Detected data points return np.size(where_detected) >= self.pts_needed def _number_of_detections(self, where_detected): """Count total number of detections.""" return len(where_detected) def _early_detect(self, where_detected, time, early_window_days=7.0, n_early_detections=2): """Detection near the start of the outburst. Parameters ---------- where_detected : `array` indexes corresponding to 5 sigma detections mags : `array` magnitudes obtained interpolating models on the data_slice time : `array` relative times early_window_days : `float` time since start of outburst n_early_detections : `int` number of required early detections """ return np.sum(time[where_detected] <= early_window_days) >= n_early_detections def _mean_time_between_detections(self, t): """Calculate the mean time between detections over the visible interval. Parameters ---------- t : `array` Times of detections, bracketed by the start and end visibility times Return ---------- med_dt : `float` separation between observations. """ return np.mean(np.sort(np.diff(t))) def _possible_to_detect(self, visible_duration): """Return True if the outburst is ever bright enough for LSST to detect. Parameters ---------- visible_duration : `float` Length of time the outburst is above LSST's fiducial limiting mag. May be nan. Return ---------- detectable : `bool` Return True if outburst is ever detectable by LSST. """ return ~np.isnan(visible_duration)
[docs] def run(self, data_slice, slice_point=None): result = {} t = data_slice[self.mjd_col] - self.mjd0 - slice_point["start_time"] mags = np.zeros(t.size, dtype=float) for filtername in np.unique(data_slice[self.filter_col]): infilt = np.where(data_slice[self.filter_col] == filtername) mags[infilt] = self.lightcurves.lightcurve(t[infilt], filtername, slice_point["outburst_params"]) # Apply dust extinction on the light curve a_x = self.ax1[filtername] * slice_point["ebv"] mags[infilt] += a_x distmod = 5 * np.log10(slice_point["distance"] * 1.0e3) - 5.0 mags[infilt] += distmod # Find the detected points where_detected = np.where((mags < data_slice[self.m5_col]))[0] # Magnitude uncertainties with Gaussian approximation snr = m52snr(mags, data_slice[self.m5_col]) mags_unc = 2.5 * np.log10(1.0 + 1.0 / snr) result["possible_to_detect"] = self._possible_to_detect(slice_point["visible_duration"]) result["ever_detect"] = self._ever_detect(where_detected) result["early_detect"] = self._early_detect(where_detected, t, self.t_early, self.pts_early) result["number_of_detections"] = self._number_of_detections(where_detected) if result["number_of_detections"] > 1: result["mean_time_between_detections"] = self._mean_time_between_detections( [ slice_point["visible_start_time"], *t[where_detected].tolist(), slice_point["visible_end_time"], ] ) else: result["mean_time_between_detections"] = -999 # Export the light curve if self.output_lc is True: wdet = mags < data_slice[self.m5_col] mags[~wdet] = 99.0 result["lc"] = [ data_slice[self.mjd_col], mags, mags_unc, data_slice[self.m5_col], data_slice[self.filter_col], ] result["lc_colnames"] = ("t", "mag", "mag_unc", "maglim", "filter") return result
def reduce_possible_to_detect(self, metric): return metric["possible_to_detect"] def reduce_ever_detect(self, metric): return metric["ever_detect"] def reduce_early_detect(self, metric): return metric["early_detect"] def reduce_number_of_detections(self, metric): return metric["number_of_detections"] def reduce_mean_time_between_detections(self, metric): tt = metric["mean_time_between_detections"] if tt < 0: return self.badval else: return tt
[docs] def generate_xrb_pop_slicer(t_start=1, t_end=3652, n_events=10000, seed=42): """Generate a population of XRB events, and put the info about them into a UserPointSlicer object. Parameters ---------- t_start : `float` The night to start an XRB outburst on (days; default 1) t_end : `float` The final night of XRBs events (days; default 3652) n_events : `int` The number of XRB outbursts to generate (default 10000) seed : `float` The seed passed to np.random (default 42) """ rng = np.random.default_rng(seed) datadir = get_data_dir() xrb_sample = np.genfromtxt(datadir + "/maf/xrb/sample_xrb_positions.csv.gz", delimiter=",") nsamples, nfields = xrb_sample.shape xrb_lc_gen = XrbLc() # select a random subsample event_idxs = rng.choice(np.arange(nsamples), size=n_events, replace=True) ra = xrb_sample[event_idxs, 0] dec = xrb_sample[event_idxs, 1] distance_kpc = xrb_sample[event_idxs, 2] ebv = xrb_sample[event_idxs, 3] start_times = rng.uniform(low=t_start, high=t_end, size=n_events) # Set up the slicer to evaluate the catalog we just made slicer = UserPointsSlicer(ra, dec, lat_lon_deg=True, badval=0) # Add any additional information about each object to the slicer slicer.slice_points["start_time"] = start_times slicer.slice_points["distance"] = distance_kpc # use our own 3-d dust map extinctions slicer.slice_points["ebv"] = ebv # generate random parameters for this event slicer.slice_points["outburst_params"] = xrb_lc_gen.outburst_params(size=n_events) # determine detectable durations visible_starts = [] visible_ends = [] visible_durations = [] for idx, param in enumerate(slicer.slice_points["outburst_params"]): start, end = xrb_lc_gen.detectable_duration(param, ebv[idx], distance_kpc[idx]) visible_starts.append(start) visible_ends.append(end) visible_durations.append(end - start) slicer.slice_points["visible_start_time"] = visible_starts slicer.slice_points["visible_end_time"] = visible_ends slicer.slice_points["visible_duration"] = visible_durations return slicer