Source code for rubin_sim.maf.maf_contrib.tdes_pop_metric

__all__ = ("TdeLc", "TdePopMetric", "TdePopMetricQuality", "generate_tde_pop_slicer")

import glob
import os

import numpy as np
from rubin_scheduler.data import get_data_dir
from rubin_scheduler.utils import SURVEY_START_MJD, uniform_sphere

import rubin_sim.maf.metrics as metrics
import rubin_sim.maf.slicers as slicers
from rubin_sim.phot_utils import DustValues


[docs] class TdeLc: """ Read in some TDE lightcurves Parameters ---------- file_list : `list` [`str`], opt List of file paths to load. If None, loads up all the files from $RUBIN_SIM_DATA/maf/tde/ """ def __init__(self, file_list=None): if file_list is None: sims_maf_contrib_dir = get_data_dir() file_list = glob.glob(os.path.join(sims_maf_contrib_dir, "maf/tde/*.dat")) lcs = [] for filename in file_list: lcs.append(np.genfromtxt(filename, dtype=[("ph", "f8"), ("mag", "f8"), ("filter", "U1")])) # Let's organize the data in to a list of dicts for easy lookup self.data = [] filternames = "ugrizy" for lc in lcs: new_dict = {} for filtername in filternames: infilt = np.where(lc["filter"] == filtername) new_dict[filtername] = lc[infilt] self.data.append(new_dict)
[docs] def interp(self, t, filtername, lc_indx=0): """ t : array of floats The times to interpolate the light curve to. filtername : str The filter. one of ugrizy lc_index : int (0)   Which file to use. """ result = np.interp( t, self.data[lc_indx][filtername]["ph"], self.data[lc_indx][filtername]["mag"], left=99, right=99, ) return result
[docs] class TdePopMetric(metrics.BaseMetric): def __init__( self, metric_name="TDEsPopMetric", mjd_col="observationStartMJD", m5_col="fiveSigmaDepth", filter_col="filter", night_col="night", pts_needed=2, file_list=None, mjd0=SURVEY_START_MJD, **kwargs, ): maps = ["DustMap"] self.mjd_col = mjd_col self.m5_col = m5_col self.filter_col = filter_col self.night_col = night_col self.pts_needed = pts_needed self.lightcurves = TdeLc(file_list=file_list) self.mjd0 = mjd0 dust_properties = DustValues() self.ax1 = dust_properties.ax1 cols = [self.mjd_col, self.m5_col, self.filter_col, self.night_col] super(TdePopMetric, self).__init__( col=cols, units="Detected, 0 or 1", metric_name=metric_name, maps=maps, **kwargs ) def _pre_peak_detect(self, data_slice, slice_point, mags, t): """ Simple detection criteria """ result = 0 # Simple alert criteria. # Could make more in depth, or use reduce functions # to have multiple criteria checked. pre_peak_detected = np.where((t < 0) & (mags < data_slice[self.m5_col]))[0] if pre_peak_detected.size > self.pts_needed: result = 1 return result def _some_color_detect(self, data_slice, slice_point, mags, t): result = 1 # 1 detection pre peak pre_peak_detected = np.where((t < -10) & (mags < data_slice[self.m5_col]))[0] if np.size(pre_peak_detected) < 1: return 0 # At least 3 filters within 10 days of peak around_peak = np.where((np.abs(t) < 5) & (mags < data_slice[self.m5_col]))[0] if np.size(np.unique(data_slice[self.filter_col][around_peak])) < 3: return 0 # At least 2 bands after peak post_peak = np.where((t > 10) & (t < 30) & (mags < data_slice[self.m5_col]))[0] if np.size(np.unique(data_slice[self.filter_col][post_peak])) < 2: return 0 return result def _some_color_pu_detect(self, data_slice, slice_point, mags, t): result = 1 # 1 detection pre peak pre_peak_detected = np.where((t < -10) & (mags < data_slice[self.m5_col]))[0] if np.size(pre_peak_detected) < 1: return 0 # 1 detection in u and any other band near peak around_peak = np.where((np.abs(t) < 5) & (mags < data_slice[self.m5_col]))[0] filters = np.unique(data_slice[self.filter_col][around_peak]) if np.size(filters) < 2: return 0 if "u" not in filters: return 0 post_peak = np.where((t > 10) & (t < 30) & (mags < data_slice[self.m5_col]))[0] filters = np.unique(data_slice[self.filter_col][post_peak]) if np.size(filters) < 2: return 0 if "u" not in filters: return 0 return result
[docs] def run(self, data_slice, slice_point=None): result = {} t = data_slice[self.mjd_col] - self.mjd0 - slice_point["peak_time"] mags = np.zeros(t.size, dtype=float) for filtername in np.unique(data_slice[self.filter_col]): infilt = np.where(data_slice[self.filter_col] == filtername) mags[infilt] = self.lightcurves.interp(t[infilt], filtername, lc_indx=slice_point["file_indx"]) # Apply dust extinction on the light curve mags[infilt] += self.ax1[filtername] * slice_point["ebv"] result["pre_peak"] = self._pre_peak_detect(data_slice, slice_point, mags, t) result["some_color"] = self._some_color_detect(data_slice, slice_point, mags, t) result["some_color_pu"] = self._some_color_pu_detect(data_slice, slice_point, mags, t) return result
def reduce_prepeak(self, metric): return metric["pre_peak"] def reduce_some_color(self, metric): return metric["some_color"] def reduce_some_color_pu(self, metric): return metric["some_color_pu"]
[docs] class TdePopMetricQuality(metrics.BaseMetric): """Evaluate the likelihood of detecting a specific TDE. Works with the TDEPopSlicer, which adds TDE events to the slice_points. Returns 0 (not detected) or 1 (detected) for TDEs with various detection criteria. 'some_color' requires 1 detection pre-peak, 3 detections in different filters within 10 days of the peak, and 2 detections in different bands within tmax post-peak. Averages 1 detection every other night. 'some_color_pu' has similar requirements, but constrains one of the near-peak detections to be in u band and 1 of the post-peak detections to be in u band. Parameters ---------- tmin : `float`, opt Minimum time for first detection (days) tmax : `float`, opt Maximum time in the lightcurve for detection (days). file_list : `list` [`str`], opt The names of the TDE lightcurve data files. mjd0 : `float`, opt The start of the survey. """ def __init__( self, metric_name="TDEsPopMetricQuality", mjd_col="observationStartMJD", m5_col="fiveSigmaDepth", filter_col="filter", night_col="night", tmin=-30, tmax=100, file_list=None, mjd0=SURVEY_START_MJD, **kwargs, ): maps = ["DustMap"] self.mjd_col = mjd_col self.m5_col = m5_col self.filter_col = filter_col self.night_col = night_col self.tmin = tmin self.tmax = tmax self.lightcurves = TdeLc(file_list=file_list) self.mjd0 = mjd0 dust_properties = DustValues() self.ax1 = dust_properties.ax1 cols = [self.mjd_col, self.m5_col, self.filter_col, self.night_col] super(TdePopMetricQuality, self).__init__( col=cols, units="Bad: 0, Good (obs every 2 night): 1", metric_name=metric_name, maps=maps, **kwargs, ) def _some_color_pnum_detect(self, data_slice, mags, t): # 1 detection pre peak pre_peak_detected = np.where((t < -10) & (mags < data_slice[self.m5_col]))[0] if np.size(pre_peak_detected) < 1: return 0 # At least 3 filters within 10 days of peak around_peak = np.where((np.abs(t) < 5) & (mags < data_slice[self.m5_col]))[0] if np.size(np.unique(data_slice[self.filter_col][around_peak])) < 3: return 0 # At least 2 bands after peak post_peak = np.where((t > 10) & (t < 30) & (mags < data_slice[self.m5_col]))[0] if np.size(np.unique(data_slice[self.filter_col][post_peak])) < 2: return 0 # count number of data points in the light curve obs_points = np.where((t > self.tmin) & (t < self.tmax) & (mags < data_slice[self.m5_col]))[0] # define the time range around peak in which the number of # data points is measured t_range = self.tmax - self.tmin # number of data points / time range gives a "score" for # light curve quality # 0: did not pass some_color requirements; # 1: passed some_color requirements and has 1 data point # every other night nresult = np.size(obs_points) / t_range return nresult def _some_color_pu_pnum_detect(self, data_slice, mags, t): # 1 detection pre peak pre_peak_detected = np.where((t < -10) & (mags < data_slice[self.m5_col]))[0] if np.size(pre_peak_detected) < 1: return 0 # 1 detection in u and any other band near peak around_peak = np.where((np.abs(t) < 5) & (mags < data_slice[self.m5_col]))[0] filters = np.unique(data_slice[self.filter_col][around_peak]) if np.size(filters) < 2: return 0 if "u" not in filters: return 0 # 1 detecion in u and any other band post peak post_peak = np.where((t > 10) & (t < 30) & (mags < data_slice[self.m5_col]))[0] filters = np.unique(data_slice[self.filter_col][post_peak]) if np.size(filters) < 2: return 0 if "u" not in filters: return 0 # count number of data points in the light curve obs_points = np.where((t > self.tmin) & (t < self.tmax) & (mags < data_slice[self.m5_col]))[0] # define the time range around peak in which the number of # data points is measured t_range = self.tmax - self.tmin # number of data points / time range gives a "score" for # light curve quality # 0: did not pass some_color_pu requirements; # 1: passed some_color_pu requirements and has 1 data point # every other night nresult = np.size(obs_points) / t_range return nresult
[docs] def run(self, data_slice, slice_point): result = {} t = data_slice[self.mjd_col] - self.mjd0 - slice_point["peak_time"] mags = np.zeros(t.size, dtype=float) for filtername in np.unique(data_slice[self.filter_col]): infilt = np.where(data_slice[self.filter_col] == filtername) mags[infilt] = self.lightcurves.interp(t[infilt], filtername, lc_indx=slice_point["file_indx"]) # Apply dust extinction on the light curve mags[infilt] += self.ax1[filtername] * slice_point["ebv"] result["some_color_pnum"] = self._some_color_pnum_detect(data_slice, mags, t) result["some_color_pu_pnum"] = self._some_color_pu_pnum_detect(data_slice, mags, t) return result
def reduce_some_color_pnum(self, metric): return metric["some_color_pnum"] def reduce_some_color_pu_pnum(self, metric): return metric["some_color_pu_pnum"]
[docs] def generate_tde_pop_slicer(t_start=1, t_end=3652, n_events=10000, seed=42, n_files=7): """Generate a population of TDE events, and put the info about them into a UserPointSlicer object. Parameters ---------- t_start : `float`, opt The night to start tde events on (days) t_end : `float`, opt The final night of TDE events n_events : `int`, opt The number of TDE events to generate seed : `float`, opt The seed passed to np.random n_files : `int`, opt The number of different TDE lightcurves to use """ ra, dec = uniform_sphere(n_events, seed=seed) peak_times = np.random.uniform(low=t_start, high=t_end, size=n_events) file_indx = np.floor(np.random.uniform(low=0, high=n_files, size=n_events)).astype(int) # Set up the slicer to evaluate the catalog we just made slicer = slicers.UserPointsSlicer(ra, dec, lat_lon_deg=True, badval=0) # Add any additional information about each object to the slicer slicer.slice_points["peak_time"] = peak_times slicer.slice_points["file_indx"] = file_indx return slicer