Source code for rubin_sim.maf.batches.science_radar_batch

__all__ = ("science_radar_batch",)

import astropy.units as u
import healpy as hp
import numpy as np

import rubin_sim.maf as maf
import rubin_sim.maf.maps as maps
import rubin_sim.maf.metric_bundles as mb
import rubin_sim.maf.metrics as metrics
import rubin_sim.maf.plots as plots
import rubin_sim.maf.slicers as slicers

from .common import extended_summary, filter_list, lightcurve_summary, standard_summary


[docs] def science_radar_batch( runName="run name", nside=64, benchmarkArea=18000, benchmarkNvisits=825, minNvisits=750, long_microlensing=True, srd_only=False, mjd0=None, ): """A batch of metrics for looking at survey performance relative to the SRD and the main science drivers of LSST. Parameters ---------- runName : `str`, optional The name of the opsim run. nside : `int`, optional The nside to use for the HealpixSlicer (where relevant). benchmarkArea : `float`, optional The benchmark value to use for fO_Area comparison. benchmarkNvisits : `float`, optional The benchmark value to use for fO_Nvisits comparisons. minNvisits : `float`, optional The value to use to establish the area covered by at least minNvis. long_microlensing : `bool`, optional Add the longer running microlensing metrics to the batch (at a subset of crossing times only) srd_only : `bool` , optional Only return the SRD metrics mjd0 : `float`, optional Set the start time for the survey, for metrics which need this information. Returns ------- metric_bundleDict : `dict` of `maf.MetricBundle` """ bundleList = [] # Get some standard per-filter coloring and sql constraints filterlist, colors, filterorders, filtersqls, filterinfo_label = filter_list(all=False) ( allfilterlist, allcolors, allfilterorders, allfiltersqls, allfilterinfo_label, ) = filter_list(all=True) standardStats = standard_summary(with_count=False) # This is the default slicer for most purposes in this batch. # Note that the cache is on - if the metric requires a dust map, # this is not the right slicer to use. healpixslicer = slicers.HealpixSlicer(nside=nside, use_cache=True) subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()] ######################### ######################### # SRD, DM, etc ######################### ######################### # fO metric displayDict = {"group": "SRD", "subgroup": "FO metrics", "order": 0} # Configure the count metric which is what is used for f0 slicer. metric = metrics.CountExplimMetric(metric_name="fO") plotDict = { "xlabel": "Number of Visits", "asky": benchmarkArea, "n_visits": minNvisits, "x_min": 0, "x_max": 1500, } summaryMetrics = [ metrics.FOArea( nside=nside, norm=False, metric_name="fOArea", asky=benchmarkArea, n_visit=benchmarkNvisits, ), metrics.FOArea( nside=nside, norm=True, metric_name="fOArea/benchmark", asky=benchmarkArea, n_visit=benchmarkNvisits, ), metrics.FONv( nside=nside, norm=False, metric_name="fONv", asky=benchmarkArea, n_visit=benchmarkNvisits, ), metrics.FONv( nside=nside, norm=True, metric_name="fONv/benchmark", asky=benchmarkArea, n_visit=benchmarkNvisits, ), metrics.FOArea( nside=nside, norm=False, metric_name=f"fOArea_{minNvisits}", asky=benchmarkArea, n_visit=minNvisits, ), ] caption = "The FO metric evaluates the overall efficiency of observing. " caption += ( "foNv: out of %.2f sq degrees, the area receives at least X and a median of Y visits " "(out of %d, if compared to benchmark). " % (benchmarkArea, benchmarkNvisits) ) caption += ( "fOArea: this many sq deg (out of %.2f sq deg if compared " "to benchmark) receives at least %d visits. " % (benchmarkArea, benchmarkNvisits) ) displayDict["caption"] = caption bundle = mb.MetricBundle( metric, healpixslicer, "", plot_dict=plotDict, display_dict=displayDict, summary_metrics=summaryMetrics, plot_funcs=[plots.FOPlot()], ) bundleList.append(bundle) # Single visit depth distribution displayDict["subgroup"] = "Visit Depths" # Histogram values over all and per filter. value = "fiveSigmaDepth" for f in filterlist: displayDict["caption"] = "Histogram of %s" % (value) displayDict["caption"] += " for %s." % (filterinfo_label[f]) displayDict["order"] = filterorders[f] m = metrics.CountMetric(value, metric_name="%s Histogram" % (value)) slicer = slicers.OneDSlicer(slice_col_name=value) bundle = mb.MetricBundle( m, slicer, filtersqls[f], display_dict=displayDict, ) bundleList.append(bundle) displayDict["caption"] = "" for f in filterlist: slicer = maf.UniSlicer() metric = maf.MedianMetric(col="fiveSigmaDepth") bundle = mb.MetricBundle( metric, slicer, filtersqls[f], display_dict=displayDict, ) bundleList.append(bundle) ############## # Astrometry ############### rmags_para = [22.4, 24.0] rmags_pm = [20.5, 24.0] # Set up parallax/dcr stackers. parallaxStacker = maf.ParallaxFactorStacker() dcrStacker = maf.DcrStacker() # Set up parallax metrics. displayDict["subgroup"] = "Parallax" displayDict["order"] += 1 # Expected error on parallax at 10 AU. plotmaxVals = (2.0, 15.0) good_parallax_limit = 11.5 summary = [ metrics.AreaSummaryMetric( area=18000, reduce_func=np.median, decreasing=False, metric_name="Median Parallax Uncert (18k)", ), metrics.AreaThresholdMetric( upper_threshold=good_parallax_limit, metric_name="Area better than %.1f mas uncertainty" % good_parallax_limit, ), ] summary.append(metrics.PercentileMetric(percentile=95, metric_name="95th Percentile Parallax Uncert")) summary.extend(standard_summary()) for rmag, plotmax in zip(rmags_para, plotmaxVals): plotDict = {"x_min": 0, "x_max": plotmax, "color_min": 0, "color_max": plotmax} metric = metrics.ParallaxMetric( metric_name="Parallax Uncert @ %.1f" % (rmag), rmag=rmag, normalize=False, ) bundle = mb.MetricBundle( metric, healpixslicer, "", stacker_list=[parallaxStacker], display_dict=displayDict, plot_dict=plotDict, summary_metrics=summary, plot_funcs=subsetPlots, ) bundleList.append(bundle) displayDict["order"] += 1 # Parallax normalized to 'best possible'. # This separates the effect of cadence from depth. for rmag in rmags_para: metric = metrics.ParallaxMetric( metric_name="Normalized Parallax Uncert @ %.1f" % (rmag), rmag=rmag, normalize=True, ) bundle = mb.MetricBundle( metric, healpixslicer, "", stacker_list=[parallaxStacker], display_dict=displayDict, summary_metrics=standard_summary(), plot_funcs=subsetPlots, ) bundleList.append(bundle) displayDict["order"] += 1 # Parallax factor coverage. for rmag in rmags_para: metric = metrics.ParallaxCoverageMetric(metric_name="Parallax Coverage @ %.1f" % (rmag), rmag=rmag) bundle = mb.MetricBundle( metric, healpixslicer, "", stacker_list=[parallaxStacker], display_dict=displayDict, summary_metrics=standard_summary(), plot_funcs=subsetPlots, ) bundleList.append(bundle) displayDict["order"] += 1 # Parallax problems can be caused by HA and DCR degeneracies. # Check their correlation. for rmag in rmags_para: metric = metrics.ParallaxDcrDegenMetric( metric_name="Parallax-DCR degeneracy @ %.1f" % (rmag), rmag=rmag ) caption = "Correlation between parallax offset magnitude and hour angle for a r=%.1f star." % (rmag) caption += " (0 is good, near -1 or 1 is bad)." bundle = mb.MetricBundle( metric, healpixslicer, "", stacker_list=[dcrStacker, parallaxStacker], display_dict=displayDict, summary_metrics=standard_summary(), plot_funcs=subsetPlots, ) bundleList.append(bundle) displayDict["order"] += 1 # Proper Motion metrics. displayDict["subgroup"] = "Proper Motion" displayDict["order"] = 0 # Proper motion errors. plotmaxVals = (1.0, 5.0) summary = [ metrics.AreaSummaryMetric( area=18000, reduce_func=np.median, decreasing=False, metric_name="Median Proper Motion Uncert (18k)", ) ] summary.append(metrics.PercentileMetric(metric_name="95th Percentile Proper Motion Uncert")) summary.extend(standard_summary()) for rmag, plotmax in zip(rmags_pm, plotmaxVals): plotDict = {"x_min": 0, "x_max": plotmax, "color_min": 0, "color_max": plotmax} metric = metrics.ProperMotionMetric( metric_name="Proper Motion Uncert @ %.1f" % rmag, rmag=rmag, normalize=False, ) bundle = mb.MetricBundle( metric, healpixslicer, "", display_dict=displayDict, plot_dict=plotDict, summary_metrics=summary, plot_funcs=subsetPlots, ) bundleList.append(bundle) displayDict["order"] += 1 # Normalized proper motion. for rmag in rmags_pm: metric = metrics.ProperMotionMetric( metric_name="Normalized Proper Motion Uncert @ %.1f" % rmag, rmag=rmag, normalize=True, ) bundle = mb.MetricBundle( metric, healpixslicer, "", display_dict=displayDict, summary_metrics=standard_summary(), plot_funcs=subsetPlots, ) bundleList.append(bundle) displayDict["order"] += 1 # DCR precision metric displayDict["subgroup"] = "DCR" displayDict["order"] = 0 plotDict = {"caption": "Precision of DCR slope.", "percentile_clip": 95} metric = metrics.DcrPrecisionMetric() bundle = mb.MetricBundle( metric, healpixslicer, "", plot_dict=plotDict, plot_funcs=subsetPlots, display_dict=displayDict, summary_metrics=standard_summary(with_count=False), ) bundleList.append(bundle) # Rapid Revisit displayDict["subgroup"] = "Rapid Revisits" displayDict["order"] = 0 # Calculate the actual number of revisits within 30 minutes. dTmax = 30 # time in minutes m2 = metrics.NRevisitsMetric(d_t=dTmax, normed=False, metric_name="NumberOfQuickRevisits") plotDict = {"color_min": 400, "color_max": 2000, "x_min": 400, "x_max": 2000} caption = "Number of consecutive visits with return times faster than %.1f minutes, " % (dTmax) caption += "in any filter. " displayDict["caption"] = caption bundle = mb.MetricBundle( m2, healpixslicer, "", plot_dict=plotDict, plot_funcs=subsetPlots, display_dict=displayDict, summary_metrics=standard_summary(with_count=False), ) bundleList.append(bundle) displayDict["order"] += 1 # Better version of the rapid revisit requirements: # require a minimum number of visits between # dtMin and dtMax, but also a minimum number of visits # between dtMin and dtPair (the typical pair time). # 1 means the healpix met the requirements (0 means did not). dTmin = 40.0 / 60.0 # (minutes) 40s minimum for rapid revisit range dTpairs = 20.0 # minutes (time when pairs should start kicking in) dTmax = 30.0 # 30 minute maximum for rapid revisit range nOne = 82 # Number of revisits between 40s-30m required nTwo = 28 # Number of revisits between 40s - tPairs required. pix_area = float(hp.nside2pixarea(nside, degrees=True)) scale = pix_area * hp.nside2npix(nside) m1 = metrics.RapidRevisitMetric( metric_name="RapidRevisits", d_tmin=dTmin / 60.0 / 60.0 / 24.0, d_tpairs=dTpairs / 60.0 / 24.0, d_tmax=dTmax / 60.0 / 24.0, min_n1=nOne, min_n2=nTwo, ) plotDict = { "x_min": 0, "x_max": 1, "color_min": 0, "color_max": 1, "log_scale": False, } cutoff1 = 0.9 summaryStats = [metrics.FracAboveMetric(cutoff=cutoff1, scale=scale, metric_name="Area (sq deg)")] caption = "Rapid Revisit: area that receives at least %d visits between %.3f and %.1f minutes, " % ( nOne, dTmin, dTmax, ) caption += "with at least %d of those visits falling between %.3f and %.1f minutes. " % ( nTwo, dTmin, dTpairs, ) caption += ( 'Summary statistic "Area" indicates the area on the sky which meets this requirement.' " (SRD design specification is 2000 sq deg)." ) displayDict["caption"] = caption displayDict["order"] = 0 bundle = mb.MetricBundle( m1, healpixslicer, "", plot_dict=plotDict, plot_funcs=subsetPlots, display_dict=displayDict, summary_metrics=summaryStats, ) bundleList.append(bundle) # For SRD batch only, return here. if srd_only: for b in bundleList: b.set_run_name(runName) bundleDict = mb.make_bundles_dict_from_list(bundleList) return bundleDict # Year Coverage displayDict["subgroup"] = "Year Coverage" metric = metrics.YearCoverageMetric() for f in filterlist: plotDict = {"color_min": 7, "color_max": 10, "color": colors[f]} displayDict["caption"] = f"Number of years of coverage in {f} band." displayDict["order"] = filterorders[f] summary = [ metrics.AreaSummaryMetric( area=18000, reduce_func=np.mean, decreasing=True, metric_name="N Years (18k) %s" % f, ) ] bundle = mb.MetricBundle( metric, healpixslicer, filtersqls[f], plot_dict=plotDict, info_label=filterinfo_label[f], display_dict=displayDict, summary_metrics=summary, ) bundleList.append(bundle) ######################### ######################### # Galaxies ######################### ######################### # Run this per filter, to look at variations in counts # of galaxies in blue bands? displayDict = { "group": "Galaxies", "subgroup": "Galaxy Counts", "order": 0, "caption": None, } summary = [ metrics.AreaSummaryMetric( area=18000, reduce_func=np.sum, decreasing=True, metric_name="N Galaxies (18k)", ) ] summary.append(metrics.SumMetric(metric_name="N Galaxies (all)")) # make sure slicer has cache off slicer = slicers.HealpixSlicer(nside=nside, use_cache=False) for f in filterlist: plotDict = {"percentile_clip": 95.0, "n_ticks": 5, "color": colors[f]} metric = maf.GalaxyCountsMetricExtended(filter_band=f, redshift_bin="all", nside=nside) displayDict["caption"] = ( f"Number of galaxies across the sky, in {f} band. Generally, full survey footprint." ) displayDict["order"] = filterorders[f] bundle = mb.MetricBundle( metric, slicer, filtersqls[f], plot_dict=plotDict, display_dict=displayDict, summary_metrics=summary, plot_funcs=subsetPlots, ) bundleList.append(bundle) displayDict["subgroup"] = "Surface Brightness" summary = [metrics.MedianMetric()] for filtername in "ugrizy": displayDict["caption"] = "Surface brightness limit in %s, no extinction applied." % filtername displayDict["order"] = filterorders[f] sql = 'filter="%s"' % filtername metric = metrics.SurfaceBrightLimitMetric() bundle = mb.MetricBundle( metric, healpixslicer, sql, display_dict=displayDict, summary_metrics=summary, plot_funcs=subsetPlots, ) bundleList.append(bundle) ######################### ######################### # Cosmology ######################### ######################### bandpass = "i" nfilters_needed = 6 lim_ebv = 0.2 offset = 0.1 mag_cuts = { 1: 24.75 - offset, 2: 25.12 - offset, 3: 25.35 - offset, 4: 25.5 - offset, 5: 25.62 - offset, 6: 25.72 - offset, 7: 25.8 - offset, 8: 25.87 - offset, 9: 25.94 - offset, 10: 26.0 - offset, } yrs = list(mag_cuts.keys()) maxYr = max(yrs) displayDict = {"group": "Cosmology"} subgroupCount = 1 displayDict["subgroup"] = f"{subgroupCount}: Static Science" ## Static Science # Calculate the static science metrics - effective survey area, # mean/median coadded depth, stdev of coadded depth and # the 3x2ptFoM emulator. dustmap = maps.DustMap(nside=nside, interp=False) pix_area = hp.nside2pixarea(nside, degrees=True) summaryMetrics = [ metrics.MeanMetric(), metrics.MedianMetric(), metrics.RmsMetric(), metrics.CountRatioMetric(norm_val=1 / pix_area, metric_name="Effective Area (deg)"), ] displayDict["order"] = 0 slicer = slicers.HealpixSlicer(nside=nside, use_cache=False) for yr_cut in yrs: ptsrc_lim_mag_i_band = mag_cuts[yr_cut] sqlconstraint = "night <= %s" % (yr_cut * 365.25 + 0.5) sqlconstraint += ' and scheduler_note not like "DD%"' info_label = f"{bandpass} band non-DD year {yr_cut}" ThreebyTwoSummary = maf.StaticProbesFoMEmulatorMetric(nside=nside, metric_name="3x2ptFoM") m = metrics.ExgalM5WithCuts( lsst_filter=bandpass, n_filters=nfilters_needed, extinction_cut=lim_ebv, depth_cut=ptsrc_lim_mag_i_band, ) caption = ( f"Cosmology/Static science metrics are based on evaluating the region " f"of the sky that meets the requirements (in year {yr_cut} of coverage" f"in all {nfilters_needed} bands, a lower E(B-V) value than {lim_ebv} " f"and at least a coadded depth of {ptsrc_lim_mag_i_band} in {bandpass}. " f"From there the effective survey area, coadded depth, standard deviation of " f"the depth, and a 3x2pt static science figure of merit emulator are " f"calculated using the dust-extinction coadded depth map (over that reduced " f"footprint)." ) displayDict["caption"] = caption bundle = mb.MetricBundle( m, slicer, sqlconstraint, maps_list=[dustmap], info_label=info_label, summary_metrics=summaryMetrics + [ThreebyTwoSummary], # , ThreebyTwoSummary_simple], display_dict=displayDict, ) displayDict["order"] += 1 bundleList.append(bundle) ## LSS Science # The only metric we have from LSS is the NGals metric - # which is similar to the GalaxyCountsExtended # metric, but evaluated only on the depth/dust cuts footprint. subgroupCount += 1 displayDict["subgroup"] = f"{subgroupCount}: LSS" displayDict["order"] = 0 plotDict = {"n_ticks": 5} # Have to include all filters in query to check for filter coverage. # Galaxy numbers calculated using 'bandpass' images only though. sqlconstraint = 'scheduler_note not like "DD%"' info_label = f"{bandpass} band galaxies non-DD" metric = maf.DepthLimitedNumGalMetric( nside=nside, filter_band=bandpass, redshift_bin="all", nfilters_needed=nfilters_needed, lim_mag_i_ptsrc=mag_cuts[maxYr], lim_ebv=lim_ebv, ) summary = [ metrics.AreaSummaryMetric( area=18000, reduce_func=np.sum, decreasing=True, metric_name="N Galaxies (18k)", ) ] summary.append(metrics.SumMetric(metric_name="N Galaxies (all)")) slicer = slicers.HealpixSlicer(nside=nside, use_cache=False) bundle = mb.MetricBundle( metric, slicer, sqlconstraint, plot_dict=plotDict, info_label=info_label, maps_list=[dustmap], display_dict=displayDict, summary_metrics=summary, plot_funcs=subsetPlots, ) bundleList.append(bundle) ## WL metrics # Calculates the number of visits per pointing, # after removing parts of the footprint due to dust/depth. # Count visits in gri bands. subgroupCount += 1 displayDict["subgroup"] = f"{subgroupCount}: WL" displayDict["order"] = 0 sqlconstraint = 'scheduler_note not like "DD%" and (filter="g" or filter="r" or filter="i")' info_label = "gri band non-DD" minExpTime = 15 m = metrics.WeakLensingNvisits( lsst_filter=bandpass, depth_cut=mag_cuts[maxYr], ebvlim=lim_ebv, min_exp_time=minExpTime, metric_name="WeakLensingNvisits", ) slicer = slicers.HealpixSlicer(nside=nside, use_cache=False) displayDict["caption"] = ( f"The number of visits per pointing, over a similarly reduced footprint as " f"described above for the 3x2pt FOM, but allowing areas of sky with " f"fewer than {nfilters_needed} filters. " f"A cutoff of {minExpTime} removes very short visits." ) bundle = mb.MetricBundle( m, slicer, sqlconstraint, maps_list=[dustmap], info_label=info_label, summary_metrics=standardStats, display_dict=displayDict, ) bundleList.append(bundle) # Do the weak lensing per year for year in np.arange(1, 10): displayDict["order"] = year sqlconstraint = ( 'scheduler_note not like "DD%"' + ' and (filter="g" or filter="r" or filter="i") and night < %i' % (year * 365.25) ) m = metrics.WeakLensingNvisits( lsst_filter=bandpass, depth_cut=mag_cuts[year], ebvlim=lim_ebv, min_exp_time=minExpTime, metric_name="WeakLensingNvisits_gri_year%i" % year, ) bundle = mb.MetricBundle( m, slicer, sqlconstraint, maps_list=[dustmap], info_label=info_label, summary_metrics=standardStats, display_dict=displayDict, ) bundleList.append(bundle) m = metrics.RIZDetectionCoaddExposureTime( det_bands=["g", "r", "i"], metric_name="gri_exposure_time_year%i" % year ) bundle = mb.MetricBundle( m, slicer, sqlconstraint, maps_list=[dustmap], info_label=info_label, summary_metrics=standardStats, display_dict=displayDict, ) bundleList.append(bundle) sqlconstraint = ( 'scheduler_note not like "DD%"' + ' and (filter="r" or filter="i" or filter="z") and night < %i' % (year * 365.25) ) m = metrics.WeakLensingNvisits( lsst_filter=bandpass, depth_cut=mag_cuts[year], ebvlim=lim_ebv, min_exp_time=minExpTime, metric_name="WeakLensingNvisits_riz_year%i" % year, ) bundle = mb.MetricBundle( m, slicer, sqlconstraint, maps_list=[dustmap], info_label=info_label, summary_metrics=standardStats, display_dict=displayDict, ) bundleList.append(bundle) m = metrics.RIZDetectionCoaddExposureTime( det_bands=["g", "r", "i"], metric_name="riz_exposure_time_year%i" % year ) bundle = mb.MetricBundle( m, slicer, sqlconstraint, maps_list=[dustmap], info_label=info_label, summary_metrics=standardStats, display_dict=displayDict, ) bundleList.append(bundle) subgroupCount += 1 displayDict["subgroup"] = f"{subgroupCount}: Camera Rotator" metric1 = metrics.KuiperMetric("rotSkyPos") metric2 = metrics.KuiperMetric("rotTelPos") caption_root = "Kuiper statistic (0 is uniform, 1 is delta function) of the " for f in filterlist: for m in [metric1, metric2]: plotDict = {"color": colors[f]} displayDict["order"] = filterorders[f] displayDict["caption"] = caption_root + f"{m.colname} for visits in {f} band." bundleList.append( mb.MetricBundle( m, healpixslicer, filtersqls[f], plot_dict=plotDict, display_dict=displayDict, summary_metrics=standardStats, plot_funcs=subsetPlots, ) ) # Kuiper per year in gri and riz for year in np.arange(1, 10): sqlconstraint = ( 'scheduler_note not like "DD%"' + ' and (filter="g" or filter="r" or filter="i") and night < %i' % (year * 365.25) ) metric1 = metrics.KuiperMetric("rotSkyPos", metric_name="Kuiper_rotSkyPos_gri_year%i" % year) metric2 = metrics.KuiperMetric("rotTelPos", metric_name="Kuiper_rotTelPos_gri_year%i" % year) for metric in [metric1, metric2]: bundleList.append( mb.MetricBundle( metric, healpixslicer, sqlconstraint, plot_dict={}, display_dict=displayDict, summary_metrics=standardStats, plot_funcs=subsetPlots, ) ) ############## # SNe Ia ############## displayDict = { "group": "Cosmology", "subgroup": "5: SNe Ia", "order": 0, "caption": "Expected discoveries of SNeIa, using the SNNSNMetric.", } sne_nside = 16 sn_summary = [ metrics.MedianMetric(), metrics.MeanMetric(), metrics.SumMetric(metric_name="Total detected"), metrics.CountMetric(metric_name="Total on sky", mask_val=0), ] snslicer = slicers.HealpixSlicer(nside=sne_nside, use_cache=False) metric = metrics.SNNSNMetric( n_bef=3, n_aft=8, coadd_night=True, add_dust=False, hard_dust_cut=0.25, zmin=0.2, zmax=0.5, z_step=0.03, daymax_step=3.0, zlim_coeff=0.95, gamma_name="gamma_WFD.hdf5", verbose=False, ) plotDict = {"percentile_clip": 95, "n_ticks": 5} # Run without DDF observations bundle = mb.MetricBundle( metric, snslicer, "scheduler_note not like '%DD%'", plot_dict=plotDict, display_dict=displayDict, info_label="DDF excluded", summary_metrics=sn_summary, plot_funcs=subsetPlots, ) bundleList.append(bundle) ######################### ######################### # AGN ######################### ######################### # AGN structure function error agnslicer = slicers.HealpixSlicer(nside=nside, use_cache=False) dustmap = maps.DustMap(nside=nside) displayDict = {"group": "AGN", "order": 0} # Calculate the number of expected QSOs, in each band for f in filterlist: sql = filtersqls[f] + ' and scheduler_note not like "%DD%"' md = filterinfo_label[f] + " and non-DD" summaryMetrics = [metrics.SumMetric(metric_name="Total QSO")] zmin = 0.3 m = metrics.QSONumberCountsMetric( f, units="mag", extinction_cut=1.0, qlf_module="Shen20", qlf_model="A", sed_model="Richards06", zmin=zmin, zmax=None, ) displayDict["subgroup"] = "nQSO" displayDict["caption"] = ( "The expected number of QSOs in regions of low dust extinction," f"based on detection in {f} bandpass." ) displayDict["order"] = filterorders[f] bundleList.append( mb.MetricBundle( m, agnslicer, constraint=sql, info_label=md, run_name=runName, maps_list=[dustmap], summary_metrics=summaryMetrics, display_dict=displayDict, ) ) # Calculate the expected AGN structure function error # These agn test magnitude values are determined by # looking at the baseline median m5 depths # For v1.7.1 these values are: agn_m5 = {"u": 22.89, "g": 23.94, "r": 23.5, "i": 22.93, "z": 22.28, "y": 21.5} # And the expected medians SF error at those values is about 0.04 summaryMetrics = extended_summary() summaryMetrics += [metrics.AreaThresholdMetric(upper_threshold=0.03, metric_name="AreaThreshold_0.03")] summaryMetrics += [metrics.AreaThresholdMetric(upper_threshold=0.06, metric_name="AreaThreshold_0.06")] for f in filterlist: m = metrics.SFUncertMetric( mag=agn_m5[f], bins=np.logspace(0, np.log10(3650), 16), metric_name="AGN SF_uncert", ) plotDict = {"color": colors[f], "color_min": 0, "color_max": 0.2} displayDict["order"] = filterorders[f] displayDict["subgroup"] = "SFUncert" displayDict["caption"] = ( "Expected AGN structure function uncertainties, based on observations in " f"{f} band, for an AGN of magnitude {agn_m5[f]:.2f}" ) bundleList.append( mb.MetricBundle( m, agnslicer, constraint=filtersqls[f], info_label=filterinfo_label[f], run_name=runName, maps_list=[dustmap], plot_dict=plotDict, summary_metrics=summaryMetrics, display_dict=displayDict, ) ) # Run the TimeLag for each filter *and* all filters nquist_threshold = 2.2 lag = 100 summaryMetrics = extended_summary() summaryMetrics += [metrics.AreaThresholdMetric(lower_threshold=nquist_threshold)] m = metrics.AgnTimeLagMetric(threshold=nquist_threshold, lag=lag) for f in allfilterlist: plotDict = { "color": allcolors[f], "color_min": 0, "color_max": 5, "percentile_clip": 95, } displayDict["order"] = allfilterorders[f] displayDict["subgroup"] = "Time Lags" displayDict["caption"] = ( f"Comparion of the time between visits compared to a defined sampling gap ({lag} days) in " f"{f} band." ) bundleList.append( mb.MetricBundle( m, agnslicer, constraint=allfiltersqls[f], info_label=allfilterinfo_label[f], run_name=runName, maps_list=[dustmap], plot_dict=plotDict, summary_metrics=summaryMetrics, display_dict=displayDict, ) ) # Run the TimeLag for each filter *and* all filters but for 5 days nquist_threshold = 2.2 lag = 5 summaryMetrics = extended_summary() summaryMetrics += [metrics.AreaThresholdMetric(lower_threshold=nquist_threshold)] m = metrics.AgnTimeLagMetric(threshold=nquist_threshold, lag=lag) for f in allfilterlist: plotDict = { "color": allcolors[f], "color_min": 0, "color_max": 5, "percentile_clip": 95, } displayDict["order"] = allfilterorders[f] displayDict["subgroup"] = "Time Lags" displayDict["caption"] = ( f"Comparion of the time between visits compared to a defined sampling gap ({lag} days) in " f"{f} band." ) bundleList.append( mb.MetricBundle( m, agnslicer, constraint=allfiltersqls[f], info_label=allfilterinfo_label[f], run_name=runName, maps_list=[dustmap], plot_dict=plotDict, summary_metrics=summaryMetrics, display_dict=displayDict, ) ) ######################### ######################### # Strong Lensing ######################### ######################### # TDC metric # Calculate a subset of DESC WFD-related metrics. if nside > 64: nside_tdc = 64 else: nside_tdc = nside displayDict = {"group": "Strong Lensing"} displayDict["subgroup"] = "Lens Time Delay" tdc_plots = [plots.HealpixSkyMap(), plots.HealpixHistogram()] plotDict = {"x_min": 0.01, "color_min": 0.01, "percentile_clip": 70, "n_ticks": 5} tdc_summary = [metrics.MeanMetric(), metrics.MedianMetric(), metrics.RmsMetric()] # Ideally need a way to do better on calculating the summary metrics # for the high accuracy area. slicer = slicers.HealpixSlicer(nside=nside_tdc, use_cache=False) tdcMetric = metrics.TdcMetric(metric_name="TDC") dustmap = maps.DustMap(nside=nside_tdc, interp=False) bundle = mb.MetricBundle( tdcMetric, slicer, constraint="", display_dict=displayDict, plot_dict=plotDict, plot_funcs=tdc_plots, maps_list=[dustmap], summary_metrics=tdc_summary, ) bundleList.append(bundle) # Strongly lensed SNe displayDict["group"] = "Strong Lensing" displayDict["subgroup"] = "SLSN" displayDict["caption"] = "Strongly Lensed SNe, evaluated with the addition of galactic dust extinction." metric = metrics.SNSLMetric() slicer = slicers.HealpixSlicer(nside=nside_tdc, use_cache=False) plotDict = {} bundle = mb.MetricBundle( metric, slicer, "", run_name=runName, plot_dict=plotDict, summary_metrics=metrics.SumMetric(metric_name="Total detected"), display_dict=displayDict, ) bundleList.append(bundle) ######################### ######################### # Variables and Transients ######################### ######################### # Periodic Stars displayDict = {"group": "Variables/Transients", "order": 0} # PeriodicStarModulation metric # colors for c type RRLyrae displayDict["subgroup"] = "Periodic Star Modulation" I_rrc_lmc = 18.9 V_rrc_lmc = 19.2 Vi = V_rrc_lmc - (2.742 * 0.08) - 18.5 Ii = I_rrc_lmc - (1.505 * 0.08) - 18.5 ii_rrc = Ii + 0.386 * 0.013 + 0.397 # 0.013 = (i-z)_0 gi_rrc = ii_rrc + 1.481 * (Vi - Ii) - 0.536 ri_rrc = (1 / 0.565) * (Vi - 0.435 * gi_rrc + 0.016) ui_rrc = gi_rrc + 0.575 zi_rrc = ii_rrc - 0.013 yi_rrc = zi_rrc rrc = np.array([ui_rrc, gi_rrc, ri_rrc, ii_rrc, zi_rrc, yi_rrc]) time_intervals = (15, 30) distMod = (18, 19, 20, 21) summaryStats = [metrics.MeanMetric(), metrics.MedianMetric(), metrics.MaxMetric()] slicer = slicers.HealpixSlicer(nside=8) for time_interval in time_intervals: for dM in distMod: displayDict["caption"] = ( "Periodic star modulation metric, evaluates the likelihood of " "measuring variation in an RRLyrae periodic variable. " "Evaluated based on the full LSST survey data. " f"Searching time interval of {time_interval} and distance modulus {dM}." ) displayDict["order"] += 1 m = maf.PeriodicStarModulationMetric( period=0.3, amplitude=0.3, random_phase=True, time_interval=time_interval, n_monte=100, period_tol=0.002, amp_tol=0.01, means=rrc + dM, mag_tol=0.01, n_bands=3, ) # Run this on year 1-2. bundle = mb.MetricBundle( m, slicer, "night < 365.25*2", display_dict=displayDict, run_name=runName, summary_metrics=summaryStats, info_label=f"dm {dM} interval {time_interval} RRc Year 1-2", ) bundleList.append(bundle) # PulsatingStarRecovery metric (to be added; Marcella) # our periodic star metrics displayDict["subgroup"] = "Periodic Stars" displayDict["order"] = 0 for period in [0.5, 1, 2]: for magnitude in [21.0, 24.0]: amplitudes = [0.05, 0.1, 1.0] periods = [period] * len(amplitudes) starMags = [magnitude] * len(amplitudes) plotDict = { "n_ticks": 3, "color_min": 0, "color_max": 3, "x_min": 0, "x_max": 3, } info_label = "P_%.1f_Mag_%.0f_Amp_0.05-0.1-1" % (period, magnitude) sql = "" displayDict["caption"] = ( "Metric evaluates if a periodic signal of period %.1f days could " "be detected for an r=%i star. A variety of amplitudes of periodicity " "are tested: [1, 0.1, and 0.05] mag amplitudes, which correspond to " "metric values of [1, 2, or 3]. " % (period, magnitude) ) metric = metrics.PeriodicDetectMetric( periods=periods, star_mags=starMags, amplitudes=amplitudes, metric_name="PeriodicDetect", ) bundle = mb.MetricBundle( metric, healpixslicer, sql, info_label=info_label, display_dict=displayDict, plot_dict=plotDict, plot_funcs=subsetPlots, summary_metrics=standardStats, ) bundleList.append(bundle) displayDict["order"] += 1 # our periodic star metrics - first two years only displayDict["order"] = 1 for period in [0.5, 1, 2]: for magnitude in [21.0, 24.0]: amplitudes = [0.05, 0.1, 1.0] periods = [period] * len(amplitudes) starMags = [magnitude] * len(amplitudes) plotDict = { "n_ticks": 3, "color_min": 0, "color_max": 3, "x_min": 0, "x_max": 3, } info_label = "P_%.1f_Mag_%.0f_Amp_0.05-0.1-1 Yr 2" % (period, magnitude) sql = "night < 365.5*2" displayDict["caption"] = ( "Metric evaluates if a periodic signal of period %.1f days could " "be detected for an r=%i star, within the first two years. " "A variety of amplitudes of periodicity " "are tested: [1, 0.1, and 0.05] mag amplitudes, which correspond to " "metric values of [1, 2, or 3]. " % (period, magnitude) ) metric = metrics.PeriodicDetectMetric( periods=periods, star_mags=starMags, amplitudes=amplitudes, metric_name="PeriodicDetect", ) bundle = mb.MetricBundle( metric, healpixslicer, sql, info_label=info_label, display_dict=displayDict, plot_dict=plotDict, plot_funcs=subsetPlots, summary_metrics=standardStats, ) bundleList.append(bundle) displayDict["order"] += 1 # Tidal Disruption Events displayDict["subgroup"] = "TDE" displayDict["caption"] = "TDE lightcurves that could be identified" displayDict["order"] = 0 metric = maf.TdePopMetric(mjd0=mjd0) tdeslicer = maf.generate_tde_pop_slicer() bundle = mb.MetricBundle( metric, tdeslicer, "", run_name=runName, summary_metrics=lightcurve_summary(), display_dict=displayDict, plot_funcs=[plots.HealpixSkyMap()], ) bundleList.append(bundle) displayDict["caption"] = "TDE lightcurves quality" metric = maf.TdePopMetricQuality(metric_name="TDE_Quality") bundle = mb.MetricBundle( metric, tdeslicer, "", run_name=runName, summary_metrics=lightcurve_summary(), display_dict=displayDict, plot_funcs=[plots.HealpixSkyMap()], ) bundleList.append(bundle) # Microlensing events displayDict["subgroup"] = "Microlensing" plotDict = {"nside": 128} n_events = 10000 # Let's evaluate a variety of crossing times crossing_times = [ [1, 5], [5, 10], [10, 20], [20, 30], [30, 60], [60, 90], [100, 200], [200, 500], [500, 1000], ] metric = maf.MicrolensingMetric() summaryMetrics = maf.batches.lightcurve_summary() order = 0 for crossing in crossing_times: displayDict["caption"] = "Microlensing events with crossing times between %i to %i days." % ( crossing[0], crossing[1], ) displayDict["order"] = order order += 1 slicer = maf.generate_microlensing_slicer( min_crossing_time=crossing[0], max_crossing_time=crossing[1], n_events=n_events, ) bundleList.append( maf.MetricBundle( metric, slicer, None, run_name=runName, summary_metrics=summaryMetrics, info_label=f"tE {crossing[0]}_{crossing[1]} days", display_dict=displayDict, plot_dict=plotDict, plot_funcs=[plots.HealpixSkyMap()], ) ) if long_microlensing: n_events = 10000 # Let's evaluate a subset of the crossing times for these crossing_times = [ [10, 20], [20, 30], [30, 60], [200, 500], ] metric_Npts = maf.MicrolensingMetric(metric_calc="Npts") summaryMetrics = maf.batches.microlensing_summary(metric_type="Npts") order = 0 for crossing in crossing_times: slicer = maf.generate_microlensing_slicer( min_crossing_time=crossing[0], max_crossing_time=crossing[1], n_events=n_events, ) displayDict["caption"] = "Microlensing events with crossing times between %i to %i days." % ( crossing[0], crossing[1], ) displayDict["order"] = order order += 1 bundleList.append( maf.MetricBundle( metric_Npts, slicer, None, run_name=runName, summary_metrics=summaryMetrics, info_label=f"tE {crossing[0]}_{crossing[1]} days", display_dict=displayDict, plot_dict=plotDict, plot_funcs=[], ) ) metric_Fisher = maf.MicrolensingMetric(metric_calc="Fisher") summaryMetrics = maf.batches.microlensing_summary(metric_type="Fisher") order = 0 for crossing in crossing_times: displayDict["caption"] = "Microlensing events with crossing times between %i to %i days." % ( crossing[0], crossing[1], ) displayDict["order"] = order order += 1 slicer = maf.generate_microlensing_slicer( min_crossing_time=crossing[0], max_crossing_time=crossing[1], n_events=n_events, ) bundleList.append( maf.MetricBundle( metric_Fisher, slicer, None, run_name=runName, summary_metrics=summaryMetrics, info_label=f"tE {crossing[0]}_{crossing[1]} days", display_dict=displayDict, plot_dict=plotDict, plot_funcs=[], ) ) # Kilonovae metric displayDict["group"] = "Variables/Transients" displayDict["subgroup"] = "KNe" n_events = 500000 caption = f"KNe metric, injecting {n_events} lightcurves over the entire sky, GW170817-like only." caption += " Ignoring DDF observations." displayDict["caption"] = caption displayDict["order"] = 0 # Kilonova parameters inj_params_list = [ {"mej_dyn": 0.005, "mej_wind": 0.050, "phi": 30, "theta": 25.8}, ] filename = maf.get_kne_filename(inj_params_list) kneslicer = maf.generate_kn_pop_slicer(n_events=n_events, n_files=len(filename), d_min=10, d_max=600) metric = maf.KNePopMetric( output_lc=False, file_list=filename, metric_name="KNePopMetric_single", mjd0=mjd0, ) bundle = mb.MetricBundle( metric, kneslicer, "scheduler_note not like 'DD%'", run_name=runName, info_label="single model", summary_metrics=lightcurve_summary(), display_dict=displayDict, plot_funcs=[plots.HealpixSkyMap()], ) bundleList.append(bundle) n_events = 500000 caption = f"KNe metric, injecting {n_events} lightcurves over the entire sky, entire model population." caption += " Ignoring DDF observations." displayDict["caption"] = caption displayDict["order"] = 1 # Kilonova parameters filename = maf.get_kne_filename(None) kneslicer_allkne = maf.generate_kn_pop_slicer( n_events=n_events, n_files=len(filename), d_min=10, d_max=600 ) metric_allkne = maf.KNePopMetric(output_lc=False, file_list=filename, metric_name="KNePopMetric_all") bundle = mb.MetricBundle( metric_allkne, kneslicer_allkne, "scheduler_note not like 'DD%'", run_name=runName, info_label="all models", summary_metrics=lightcurve_summary(), display_dict=displayDict, plot_funcs=[plots.HealpixSkyMap()], ) bundleList.append(bundle) # General time intervals displayDict = { "group": "TimeGaps", "subgroup": "Time", "caption": None, "order": 0, } # Logarithmically spaced gaps from 30s to 5 years tMin = 30 / 60 / 60 / 24.0 # 30s tMax = 5 * 365.25 # 5 years tgaps = np.logspace(np.log10(tMin), np.log10(tMax), 100) for f in filterlist: m1 = metrics.TgapsMetric(bins=tgaps, all_gaps=False) plotDict = { "bins": tgaps, "xscale": "log", "y_min": 0, "figsize": (8, 6), "ylabel": "Number of observation pairs", "xlabel": "Time gap between pairs of visits (days)", "color": colors[f], } plotFuncs = [plots.SummaryHistogram()] displayDict["caption"] = ( f"Summed Histogram of time between visits at each point in the sky, " f"in {f} band(s)." ) displayDict["order"] = filterorders[f] bundleList.append( mb.MetricBundle( m1, healpixslicer, constraint=filtersqls[f], info_label=filterinfo_label[f], run_name=runName, plot_dict=plotDict, plot_funcs=plotFuncs, display_dict=displayDict, ) ) gaps = [3.0, 7.0, 24.0] for gap in gaps: summary_stats = [] summary_stats.append( metrics.AreaSummaryMetric( area=18000, reduce_func=np.median, decreasing=True, metric_name="Median N gaps in %s at %ihr in top 18k" % (f, gap), ) ) summary_stats.append( metrics.AreaSummaryMetric( area=18000, reduce_func=np.mean, decreasing=True, metric_name="Mean N gaps in %s at %ihr in top 18k" % (f, gap), ) ) summary_stats.append(metrics.MeanMetric()) summary_stats.append(metrics.MedianMetric()) m2 = metrics.GapsMetric( time_scale=gap, metric_name="Gaps_%ihr" % gap, ) plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()] plotDict = {"color_min": 0, "color": colors[f], "percentile_clip": 95} displayDict["caption"] = ( "Number of times the timescale of ~%i hours is sampled in %s band(s)." % (gap, f) ) displayDict["order"] = filterorders[f] bundleList.append( mb.MetricBundle( m2, healpixslicer, constraint=filtersqls[f], info_label=filterinfo_label[f], run_name=runName, summary_metrics=summary_stats, plot_dict=plotDict, plot_funcs=plotFuncs, display_dict=displayDict, ) ) # FilterPairTgaps Metric (for TVS) m1 = maf.FilterPairTGapsMetric() plotDict = {"color_min": 0, "color_max": 1500, "x_min": 0, "x_max": 2000} displayDict["order"] = 0 displayDict["caption"] = ( "Evaluate the distribution of filter pairs and time gaps at each point in " "the sky. The time gaps are evaluated on a logarithmic spacing " "from 0-100 days for pairs of filters, and 0-3650 days for same filters." ) summarystats = [ metrics.MedianMetric(), metrics.MeanMetric(), metrics.PercentileMetric(percentile=80), ] bundle = maf.MetricBundle( m1, healpixslicer, None, run_name=runName, summary_metrics=summarystats, plot_dict=plotDict, display_dict=displayDict, ) bundleList.append(bundle) # Presto KNe metric displayDict["group"] = "Variables/Transients" displayDict["subgroup"] = "Presto KNe" displayDict["caption"] = "Probability of detecting and classifying a KNe" prestoslicer = maf.generate_presto_pop_slicer(skyregion="extragalactic") metric = maf.PrestoColorKNePopMetric( skyregion="extragalactic", metric_name="PrestoKNe", mjd0=mjd0, ) summaryMetrics_kne = [maf.MedianMetric(), maf.SumMetric()] bundleList.append( maf.MetricBundle( metric, prestoslicer, None, run_name=runName, display_dict=displayDict, summary_metrics=summaryMetrics_kne, ) ) # color plus slope metrics displayDict["group"] = "Variables/Transients" displayDict["subgroup"] = "Color and slope" displayDict["caption"] = "Number of times a color and slope are measured in a night" sql = "visitExposureTime > 19" metric = maf.ColorSlopeMetric() summaryMetrics_cs = [maf.SumMetric()] bundleList.append( maf.MetricBundle( metric, healpixslicer, sql, run_name=runName, display_dict=displayDict, summary_metrics=summaryMetrics_cs, ) ) displayDict["group"] = "Variables/Transients" displayDict["subgroup"] = "Color and slope" displayDict["caption"] = "Number of times a color and slope are measured over 2 nights." sql = "visitExposureTime > 19" metric = maf.ColorSlope2NightMetric() summaryMetrics_cs = [maf.SumMetric()] bundleList.append( maf.MetricBundle( metric, healpixslicer, sql, run_name=runName, display_dict=displayDict, summary_metrics=summaryMetrics_cs, ) ) # XRB metric displayDict["subgroup"] = "XRB" displayDict["order"] = 0 displayDict["caption"] = "Number or characterization of XRBs." n_events = 10000 xrbslicer = maf.generate_xrb_pop_slicer(n_events=n_events) metric = maf.XRBPopMetric(output_lc=False, mjd0=mjd0) xrb_summaryMetrics = [ maf.SumMetric(metric_name="Total detected"), maf.CountMetric(metric_name="Total lightcurves in footprint"), maf.CountMetric(metric_name="Total lightcurves on sky", mask_val=0), maf.MeanMetric(metric_name="Fraction detected in footprint"), maf.MeanMetric(mask_val=0, metric_name="Fraction detected of total"), maf.MedianMetric(metric_name="Median"), maf.MeanMetric(metric_name="Mean"), ] bundleList.append( maf.MetricBundle( metric, xrbslicer, "", run_name=runName, summary_metrics=xrb_summaryMetrics, display_dict=displayDict, ) ) ######################### ######################### # Galactic Plane - TVS/MW ######################### ######################### displayDict = {"group": "Galactic Plane", "subgroup": ""} footprint_summaries = [metrics.SumMetric()] footprint_plotDicts = {"percentile_clip": 95} filter_summaries = [ metrics.MeanMetric(), metrics.MedianMetric(), metrics.RmsMetric(), metrics.AreaThresholdMetric(lower_threshold=0.8), ] filter_plotdicts = {"color_min": 0, "color_max": 2, "x_min": 0, "x_max": 5} timescale_summaries = [ metrics.SumMetric(), metrics.MedianMetric(), metrics.AreaThresholdMetric(lower_threshold=0.5), ] timescale_plotdicts = {"color_min": 0, "color_max": 1, "x_min": 0, "x_max": 1} galactic_plane_map_keys = maps.galplane_priority_map(nside=64, get_keys=True) science_maps = [ s.replace("galplane_priority_", "").split(":")[0] for s in galactic_plane_map_keys if "sum" in s ] slicer = slicers.HealpixSlicer(nside=64, use_cache=False) sql = None bundles = {} for m in science_maps: displayDict["subgroup"] = m displayDict["caption"] = f"Footprint relevant for {m} galactic plane science case." footprintmetric = metrics.GalPlaneFootprintMetric(science_map=m) bundles[f"{m} footprint"] = mb.MetricBundle( footprintmetric, slicer, sql, plot_dict=footprint_plotDicts, run_name=runName, summary_metrics=footprint_summaries, display_dict=displayDict, ) displayDict["caption"] = f"Filter balance in region of {m} galactic plane science case." filtermetric = metrics.GalPlaneTimePerFilterMetric(science_map=m) bundles[f"{m} filter"] = mb.MetricBundle( filtermetric, slicer, sql, plot_dict=filter_plotdicts, run_name=runName, summary_metrics=filter_summaries, display_dict=displayDict, ) displayDict["caption"] = f"Timescale intervals in region of {m} galactic plane science case." visit_timescalesmetric = metrics.GalPlaneVisitIntervalsTimescaleMetric(science_map=m) bundles[f"{m} visit intervals"] = mb.MetricBundle( visit_timescalesmetric, slicer, sql, plot_dict=timescale_plotdicts, run_name=runName, summary_metrics=timescale_summaries, display_dict=displayDict, ) displayDict["caption"] = f"Seasonal coverage in region of {m} galactic plane science case." season_timescalemetric = metrics.GalPlaneSeasonGapsTimescaleMetric(science_map=m) bundles[f"{m} season gaps"] = mb.MetricBundle( season_timescalemetric, slicer, sql, plot_dict=timescale_plotdicts, run_name=runName, summary_metrics=timescale_summaries, display_dict=displayDict, ) bundleList += list(bundles.values()) ######################### ######################### # Milky Way ######################### ######################### displayDict = {"group": "Milky Way", "subgroup": ""} displayDict["subgroup"] = "N stars" slicer = slicers.HealpixSlicer(nside=nside, use_cache=False) sum_stats = [metrics.SumMetric(metric_name="Total N Stars, crowding")] for f in filterlist: stellar_map = maps.StellarDensityMap(filtername=f) displayDict["order"] = filterorders[f] displayDict["caption"] = ( "Number of stars in %s band with an measurement uncertainty due to crowding " "of less than 0.2 mag" % f ) # Configure the NstarsMetric - note 'filtername' refers to the # filter in which to evaluate crowding metric = metrics.NstarsMetric( crowding_error=0.2, filtername=f, ignore_crowding=False, maps=[], ) plotDict = {"n_ticks": 5, "log_scale": True, "color_min": 100} bundle = mb.MetricBundle( metric, slicer, filtersqls[f], run_name=runName, summary_metrics=sum_stats, plot_funcs=subsetPlots, plot_dict=plotDict, display_dict=displayDict, maps_list=[stellar_map], ) bundleList.append(bundle) slicer = slicers.HealpixSlicer(nside=nside, use_cache=False) sum_stats = [metrics.SumMetric(metric_name="Total N Stars, no crowding")] for f in filterlist: stellar_map = maps.StellarDensityMap(filtername=f) displayDict["order"] = filterorders[f] displayDict["caption"] = ( "Number of stars in %s band with an measurement uncertainty " "of less than 0.2 mag, not considering crowding" % f ) # Configure the NstarsMetric - note 'filtername' refers to the # filter in which to evaluate crowding metric = metrics.NstarsMetric( crowding_error=0.2, filtername=f, ignore_crowding=True, metric_name="Nstars_no_crowding", maps=[], ) plotDict = {"n_ticks": 5, "log_scale": True, "color_min": 100} bundle = mb.MetricBundle( metric, slicer, filtersqls[f], run_name=runName, summary_metrics=sum_stats, plot_funcs=subsetPlots, plot_dict=plotDict, display_dict=displayDict, maps_list=[stellar_map], ) bundleList.append(bundle) # Brown Dwarf Volume displayDict["subgroup"] = "Brown Dwarf" displayDict["order"] = 0 l7_bd_mags = {"i": 20.09, "z": 18.18, "y": 17.13} displayDict["caption"] = ( f"The expected maximum distance at which an L7 brown dwarf with magnitude {l7_bd_mags} " f"would have a parallax SNR of 10.0. The summary statistic represents the volume enclosed by " f"the result of this metric (BDParallaxMetric)." ) sum_stats = [metrics.VolumeSumMetric(nside=nside)] metric = metrics.BDParallaxMetric(mags=l7_bd_mags, metric_name="Brown Dwarf, L7") sql = "" plotDict = {} bundleList.append( mb.MetricBundle( metric, healpixslicer, sql, plot_dict=plotDict, summary_metrics=sum_stats, display_dict=displayDict, run_name=runName, ) ) l4_bd_mags = {"i": 18.35, "z": 16.68, "y": 15.66} displayDict["caption"] = ( f"The expected maximum distance at which an L4 brown dwarf with magnitude {l4_bd_mags} " f"would have a parallax SNR of 10.0. The summary statistic represents the total volume enclosed " f"by the result of this metric (BDParallaxMetric)." ) metric = metrics.BDParallaxMetric(mags=l4_bd_mags, metric_name="Brown Dwarf, L4") bundleList.append( mb.MetricBundle( metric, healpixslicer, sql, plot_dict=plotDict, summary_metrics=sum_stats, display_dict=displayDict, run_name=runName, ) ) displayDict["subgroup"] = "Young Stellar Objects" displayDict["caption"] = ( "The number of expected Young Stellar Objects with age t<10 Myr and " "mass >0.3 solar masses, using coadded depths in g, r and i bands." ) # The underlying dustmap is nside=64, but can be resampled nside_yso = 64 dustmap3d = maps.DustMap3D(nside=nside_yso) sql = "" # Let's plug in the magnitudes for one type metric = maf.maf_contrib.NYoungStarsMetric() slicer = maf.slicers.HealpixSlicer(nside=nside_yso, use_cache=False) summaryStats = [maf.metrics.SumMetric()] plotDict = {"log_scale": True, "color_min": 1} bundleList.append( maf.metric_bundles.MetricBundle( metric, slicer, sql, maps_list=[dustmap3d], plot_dict=plotDict, summary_metrics=summaryStats, run_name=runName, display_dict=displayDict, ) ) ## Local Volume Dwarf Satellites displayDict["group"] = "Local Volume" displayDict["subgroup"] = "LV dwarf satellites" displayDict["order"] = 0 # First the known dwarf satellite galaxies displayDict["caption"] = ( "Predicted magnitude detection limit (including stellar density and " "star-galaxy separation) at the location of known LV dwarf galaxies. " ) i_starMap = maf.maps.StellarDensityMap(filtername="i") lv_slicer = maf.maf_contrib.generate_known_lv_dwarf_slicer() lv_metric = maf.maf_contrib.LVDwarfsMetric() sqlconstraint = '(filter = "i" OR filter = "g")' info_label = "gi" cutoff = -6.4 summary_metrics = [ maf.metrics.CountBeyondThreshold(lower_threshold=cutoff, metric_name=f"Total detected {cutoff}"), maf.metrics.CountBeyondThreshold(lower_threshold=-7.0, metric_name="Total detected -7.0"), ] plotDict = {"n_ticks": 7} bundle = maf.MetricBundle( lv_metric, lv_slicer, sqlconstraint, maps_list=[i_starMap], summary_metrics=summary_metrics, info_label=info_label, display_dict=displayDict, plot_dict=plotDict, ) bundleList.append(bundle) displayDict["order"] += 1 displayDict["caption"] = ( "Predicted magnitude detection limit (including stellar density and " "star-galaxy separation), over the whole sky to a distance of 4 Mpc." ) lv_metric2 = maf.maf_contrib.LVDwarfsMetric(distlim=4.0 * u.Mpc) # for a distance limit, healpix map dustmap = maf.maps.DustMap(nside=32) lv_healpix_slicer = maf.slicers.HealpixSlicer(nside=32, use_cache=False) summary_area = maf.AreaThresholdMetric(lower_threshold=cutoff, metric_name=f"Area M_v>{cutoff}") bundle = maf.MetricBundle( lv_metric2, lv_healpix_slicer, sqlconstraint, maps_list=[i_starMap, dustmap], info_label=info_label, display_dict=displayDict, summary_metrics=summary_area, plot_dict=plotDict, ) bundleList.append(bundle) displayDict["order"] += 1 displayDict["caption"] = ( "Predicted magnitude detection limit (including stellar density and " "star-galaxy separation), over the southern celestial pole," "to a distance of 0.1 Mpc." ) sqlconstraint = '(filter = "i" OR filter = "g") and fieldDec < -60' info_label = "gi SCP" lv_metric3 = maf.maf_contrib.LVDwarfsMetric(distlim=0.1 * u.Mpc) # for a distance limit, healpix map summary_area = maf.metrics.AreaThresholdMetric(lower_threshold=0.0, metric_name="Area M_v>0.0") summary_median = maf.metrics.MedianMetric() bundle = maf.MetricBundle( lv_metric3, lv_healpix_slicer, sqlconstraint, maps_list=[i_starMap, dustmap], info_label=info_label, display_dict=displayDict, plot_dict=plotDict, summary_metrics=[summary_area, summary_median], ) bundleList.append(bundle) ######################### ######################### # Per year things ######################### ######################### plotDict = {} night_cuttoffs = np.arange(1, 11, 1) * 365.25 slicer = slicers.HealpixSlicer(nside=nside) for i, cuttoff in enumerate(night_cuttoffs): for filtername in "ugrizy": sql = "night<%i and filter='%s'" % (cuttoff, filtername) metric = metrics.Coaddm5Metric(metric_name="coadd %s, year<%i" % (filtername, i + 1)) displayDict = {"group": "Per year", "subgroup": "Coadds"} bundle = mb.MetricBundle( metric, slicer, sql, run_name=runName, summary_metrics=standardStats, plot_funcs=subsetPlots, plot_dict=plotDict, display_dict=displayDict, ) bundleList.append(bundle) metric = metrics.SnrWeightedMetric( col="seeingFwhmEff", metric_name="SNR-weighted FWHMeff %s, year<%i" % (filtername, i + 1), ) displayDict = {"group": "Per year", "subgroup": "Seeing"} bundle = mb.MetricBundle( metric, slicer, sql, run_name=runName, summary_metrics=standardStats, plot_funcs=subsetPlots, plot_dict=plotDict, display_dict=displayDict, ) bundleList.append(bundle) ######################### ######################### # Scaling numbers ######################### ######################### displayDict = {"group": "Scaling Numbers", "subgroup": ""} displayDict["subgroup"] = "N gals" sql = 'filter="i"' metric = metrics.NgalScaleMetric() # galaxy counting uses dustmap slicer = slicers.HealpixSlicer(nside=nside, use_cache=False) displayDict["caption"] = ( "Approximate number of resolvable galaxies in i band, scaled by the " "coadded depth and median seeing. A dust and magnitude cut has been applied." ) bundle = mb.MetricBundle( metric, slicer, sql, run_name=runName, summary_metrics=[metrics.SumMetric()], plot_funcs=subsetPlots, plot_dict=plotDict, display_dict=displayDict, ) bundleList.append(bundle) displayDict["subgroup"] = "Lightcurve Pts" metric = metrics.NlcPointsMetric(nside=nside) # NlcPoints metric uses star density maps slicer = slicers.HealpixSlicer(nside=nside, use_cache=False) displayDict["caption"] = ( "Approximate number of expected stellar measurements (nstars * nobs) " "in all filters, where the limiting magnitude for at least 10 visits " "is fainter than 21st magnitude, using a TRILEGAL stellar density map." ) bundle = mb.MetricBundle( metric, slicer, None, run_name=runName, summary_metrics=[metrics.SumMetric()], plot_funcs=subsetPlots, plot_dict=plotDict, display_dict=displayDict, ) bundleList.append(bundle) # Set the run_name for all bundles and return the bundleDict. for b in bundleList: b.set_run_name(runName) bundleDict = mb.make_bundles_dict_from_list(bundleList) return bundleDict