__all__ = ("science_radar_batch",)
import astropy.units as u
import healpy as hp
import numpy as np
import rubin_sim.maf as maf
import rubin_sim.maf.maps as maps
import rubin_sim.maf.metric_bundles as mb
import rubin_sim.maf.metrics as metrics
import rubin_sim.maf.plots as plots
import rubin_sim.maf.slicers as slicers
from .common import extended_summary, filter_list, lightcurve_summary, standard_summary
[docs]
def science_radar_batch(
runName="run name",
nside=64,
benchmarkArea=18000,
benchmarkNvisits=825,
minNvisits=750,
long_microlensing=True,
srd_only=False,
mjd0=None,
):
"""A batch of metrics for looking at survey performance relative to the
SRD and the main science drivers of LSST.
Parameters
----------
runName : `str`, optional
The name of the opsim run.
nside : `int`, optional
The nside to use for the HealpixSlicer (where relevant).
benchmarkArea : `float`, optional
The benchmark value to use for fO_Area comparison.
benchmarkNvisits : `float`, optional
The benchmark value to use for fO_Nvisits comparisons.
minNvisits : `float`, optional
The value to use to establish the area covered by at least minNvis.
long_microlensing : `bool`, optional
Add the longer running microlensing metrics to the batch
(at a subset of crossing times only)
srd_only : `bool` , optional
Only return the SRD metrics
mjd0 : `float`, optional
Set the start time for the survey, for metrics which need
this information.
Returns
-------
metric_bundleDict : `dict` of `maf.MetricBundle`
"""
bundleList = []
# Get some standard per-filter coloring and sql constraints
filterlist, colors, filterorders, filtersqls, filterinfo_label = filter_list(all=False)
(
allfilterlist,
allcolors,
allfilterorders,
allfiltersqls,
allfilterinfo_label,
) = filter_list(all=True)
standardStats = standard_summary(with_count=False)
# This is the default slicer for most purposes in this batch.
# Note that the cache is on - if the metric requires a dust map,
# this is not the right slicer to use.
healpixslicer = slicers.HealpixSlicer(nside=nside, use_cache=True)
subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]
#########################
#########################
# SRD, DM, etc
#########################
#########################
# fO metric
displayDict = {"group": "SRD", "subgroup": "FO metrics", "order": 0}
# Configure the count metric which is what is used for f0 slicer.
metric = metrics.CountExplimMetric(metric_name="fO")
plotDict = {
"xlabel": "Number of Visits",
"asky": benchmarkArea,
"n_visits": minNvisits,
"x_min": 0,
"x_max": 1500,
}
summaryMetrics = [
metrics.FOArea(
nside=nside,
norm=False,
metric_name="fOArea",
asky=benchmarkArea,
n_visit=benchmarkNvisits,
),
metrics.FOArea(
nside=nside,
norm=True,
metric_name="fOArea/benchmark",
asky=benchmarkArea,
n_visit=benchmarkNvisits,
),
metrics.FONv(
nside=nside,
norm=False,
metric_name="fONv",
asky=benchmarkArea,
n_visit=benchmarkNvisits,
),
metrics.FONv(
nside=nside,
norm=True,
metric_name="fONv/benchmark",
asky=benchmarkArea,
n_visit=benchmarkNvisits,
),
metrics.FOArea(
nside=nside,
norm=False,
metric_name=f"fOArea_{minNvisits}",
asky=benchmarkArea,
n_visit=minNvisits,
),
]
caption = "The FO metric evaluates the overall efficiency of observing. "
caption += (
"foNv: out of %.2f sq degrees, the area receives at least X and a median of Y visits "
"(out of %d, if compared to benchmark). " % (benchmarkArea, benchmarkNvisits)
)
caption += (
"fOArea: this many sq deg (out of %.2f sq deg if compared "
"to benchmark) receives at least %d visits. " % (benchmarkArea, benchmarkNvisits)
)
displayDict["caption"] = caption
bundle = mb.MetricBundle(
metric,
healpixslicer,
"",
plot_dict=plotDict,
display_dict=displayDict,
summary_metrics=summaryMetrics,
plot_funcs=[plots.FOPlot()],
)
bundleList.append(bundle)
# Single visit depth distribution
displayDict["subgroup"] = "Visit Depths"
# Histogram values over all and per filter.
value = "fiveSigmaDepth"
for f in filterlist:
displayDict["caption"] = "Histogram of %s" % (value)
displayDict["caption"] += " for %s." % (filterinfo_label[f])
displayDict["order"] = filterorders[f]
m = metrics.CountMetric(value, metric_name="%s Histogram" % (value))
slicer = slicers.OneDSlicer(slice_col_name=value)
bundle = mb.MetricBundle(
m,
slicer,
filtersqls[f],
display_dict=displayDict,
)
bundleList.append(bundle)
displayDict["caption"] = ""
for f in filterlist:
slicer = maf.UniSlicer()
metric = maf.MedianMetric(col="fiveSigmaDepth")
bundle = mb.MetricBundle(
metric,
slicer,
filtersqls[f],
display_dict=displayDict,
)
bundleList.append(bundle)
##############
# Astrometry
###############
rmags_para = [22.4, 24.0]
rmags_pm = [20.5, 24.0]
# Set up parallax/dcr stackers.
parallaxStacker = maf.ParallaxFactorStacker()
dcrStacker = maf.DcrStacker()
# Set up parallax metrics.
displayDict["subgroup"] = "Parallax"
displayDict["order"] += 1
# Expected error on parallax at 10 AU.
plotmaxVals = (2.0, 15.0)
good_parallax_limit = 11.5
summary = [
metrics.AreaSummaryMetric(
area=18000,
reduce_func=np.median,
decreasing=False,
metric_name="Median Parallax Uncert (18k)",
),
metrics.AreaThresholdMetric(
upper_threshold=good_parallax_limit,
metric_name="Area better than %.1f mas uncertainty" % good_parallax_limit,
),
]
summary.append(metrics.PercentileMetric(percentile=95, metric_name="95th Percentile Parallax Uncert"))
summary.extend(standard_summary())
for rmag, plotmax in zip(rmags_para, plotmaxVals):
plotDict = {"x_min": 0, "x_max": plotmax, "color_min": 0, "color_max": plotmax}
metric = metrics.ParallaxMetric(
metric_name="Parallax Uncert @ %.1f" % (rmag),
rmag=rmag,
normalize=False,
)
bundle = mb.MetricBundle(
metric,
healpixslicer,
"",
stacker_list=[parallaxStacker],
display_dict=displayDict,
plot_dict=plotDict,
summary_metrics=summary,
plot_funcs=subsetPlots,
)
bundleList.append(bundle)
displayDict["order"] += 1
# Parallax normalized to 'best possible'.
# This separates the effect of cadence from depth.
for rmag in rmags_para:
metric = metrics.ParallaxMetric(
metric_name="Normalized Parallax Uncert @ %.1f" % (rmag),
rmag=rmag,
normalize=True,
)
bundle = mb.MetricBundle(
metric,
healpixslicer,
"",
stacker_list=[parallaxStacker],
display_dict=displayDict,
summary_metrics=standard_summary(),
plot_funcs=subsetPlots,
)
bundleList.append(bundle)
displayDict["order"] += 1
# Parallax factor coverage.
for rmag in rmags_para:
metric = metrics.ParallaxCoverageMetric(metric_name="Parallax Coverage @ %.1f" % (rmag), rmag=rmag)
bundle = mb.MetricBundle(
metric,
healpixslicer,
"",
stacker_list=[parallaxStacker],
display_dict=displayDict,
summary_metrics=standard_summary(),
plot_funcs=subsetPlots,
)
bundleList.append(bundle)
displayDict["order"] += 1
# Parallax problems can be caused by HA and DCR degeneracies.
# Check their correlation.
for rmag in rmags_para:
metric = metrics.ParallaxDcrDegenMetric(
metric_name="Parallax-DCR degeneracy @ %.1f" % (rmag), rmag=rmag
)
caption = "Correlation between parallax offset magnitude and hour angle for a r=%.1f star." % (rmag)
caption += " (0 is good, near -1 or 1 is bad)."
bundle = mb.MetricBundle(
metric,
healpixslicer,
"",
stacker_list=[dcrStacker, parallaxStacker],
display_dict=displayDict,
summary_metrics=standard_summary(),
plot_funcs=subsetPlots,
)
bundleList.append(bundle)
displayDict["order"] += 1
# Proper Motion metrics.
displayDict["subgroup"] = "Proper Motion"
displayDict["order"] = 0
# Proper motion errors.
plotmaxVals = (1.0, 5.0)
summary = [
metrics.AreaSummaryMetric(
area=18000,
reduce_func=np.median,
decreasing=False,
metric_name="Median Proper Motion Uncert (18k)",
)
]
summary.append(metrics.PercentileMetric(metric_name="95th Percentile Proper Motion Uncert"))
summary.extend(standard_summary())
for rmag, plotmax in zip(rmags_pm, plotmaxVals):
plotDict = {"x_min": 0, "x_max": plotmax, "color_min": 0, "color_max": plotmax}
metric = metrics.ProperMotionMetric(
metric_name="Proper Motion Uncert @ %.1f" % rmag,
rmag=rmag,
normalize=False,
)
bundle = mb.MetricBundle(
metric,
healpixslicer,
"",
display_dict=displayDict,
plot_dict=plotDict,
summary_metrics=summary,
plot_funcs=subsetPlots,
)
bundleList.append(bundle)
displayDict["order"] += 1
# Normalized proper motion.
for rmag in rmags_pm:
metric = metrics.ProperMotionMetric(
metric_name="Normalized Proper Motion Uncert @ %.1f" % rmag,
rmag=rmag,
normalize=True,
)
bundle = mb.MetricBundle(
metric,
healpixslicer,
"",
display_dict=displayDict,
summary_metrics=standard_summary(),
plot_funcs=subsetPlots,
)
bundleList.append(bundle)
displayDict["order"] += 1
# DCR precision metric
displayDict["subgroup"] = "DCR"
displayDict["order"] = 0
plotDict = {"caption": "Precision of DCR slope.", "percentile_clip": 95}
metric = metrics.DcrPrecisionMetric()
bundle = mb.MetricBundle(
metric,
healpixslicer,
"",
plot_dict=plotDict,
plot_funcs=subsetPlots,
display_dict=displayDict,
summary_metrics=standard_summary(with_count=False),
)
bundleList.append(bundle)
# Rapid Revisit
displayDict["subgroup"] = "Rapid Revisits"
displayDict["order"] = 0
# Calculate the actual number of revisits within 30 minutes.
dTmax = 30 # time in minutes
m2 = metrics.NRevisitsMetric(d_t=dTmax, normed=False, metric_name="NumberOfQuickRevisits")
plotDict = {"color_min": 400, "color_max": 2000, "x_min": 400, "x_max": 2000}
caption = "Number of consecutive visits with return times faster than %.1f minutes, " % (dTmax)
caption += "in any filter. "
displayDict["caption"] = caption
bundle = mb.MetricBundle(
m2,
healpixslicer,
"",
plot_dict=plotDict,
plot_funcs=subsetPlots,
display_dict=displayDict,
summary_metrics=standard_summary(with_count=False),
)
bundleList.append(bundle)
displayDict["order"] += 1
# Better version of the rapid revisit requirements:
# require a minimum number of visits between
# dtMin and dtMax, but also a minimum number of visits
# between dtMin and dtPair (the typical pair time).
# 1 means the healpix met the requirements (0 means did not).
dTmin = 40.0 / 60.0 # (minutes) 40s minimum for rapid revisit range
dTpairs = 20.0 # minutes (time when pairs should start kicking in)
dTmax = 30.0 # 30 minute maximum for rapid revisit range
nOne = 82 # Number of revisits between 40s-30m required
nTwo = 28 # Number of revisits between 40s - tPairs required.
pix_area = float(hp.nside2pixarea(nside, degrees=True))
scale = pix_area * hp.nside2npix(nside)
m1 = metrics.RapidRevisitMetric(
metric_name="RapidRevisits",
d_tmin=dTmin / 60.0 / 60.0 / 24.0,
d_tpairs=dTpairs / 60.0 / 24.0,
d_tmax=dTmax / 60.0 / 24.0,
min_n1=nOne,
min_n2=nTwo,
)
plotDict = {
"x_min": 0,
"x_max": 1,
"color_min": 0,
"color_max": 1,
"log_scale": False,
}
cutoff1 = 0.9
summaryStats = [metrics.FracAboveMetric(cutoff=cutoff1, scale=scale, metric_name="Area (sq deg)")]
caption = "Rapid Revisit: area that receives at least %d visits between %.3f and %.1f minutes, " % (
nOne,
dTmin,
dTmax,
)
caption += "with at least %d of those visits falling between %.3f and %.1f minutes. " % (
nTwo,
dTmin,
dTpairs,
)
caption += (
'Summary statistic "Area" indicates the area on the sky which meets this requirement.'
" (SRD design specification is 2000 sq deg)."
)
displayDict["caption"] = caption
displayDict["order"] = 0
bundle = mb.MetricBundle(
m1,
healpixslicer,
"",
plot_dict=plotDict,
plot_funcs=subsetPlots,
display_dict=displayDict,
summary_metrics=summaryStats,
)
bundleList.append(bundle)
# For SRD batch only, return here.
if srd_only:
for b in bundleList:
b.set_run_name(runName)
bundleDict = mb.make_bundles_dict_from_list(bundleList)
return bundleDict
# Year Coverage
displayDict["subgroup"] = "Year Coverage"
metric = metrics.YearCoverageMetric()
for f in filterlist:
plotDict = {"color_min": 7, "color_max": 10, "color": colors[f]}
displayDict["caption"] = f"Number of years of coverage in {f} band."
displayDict["order"] = filterorders[f]
summary = [
metrics.AreaSummaryMetric(
area=18000,
reduce_func=np.mean,
decreasing=True,
metric_name="N Years (18k) %s" % f,
)
]
bundle = mb.MetricBundle(
metric,
healpixslicer,
filtersqls[f],
plot_dict=plotDict,
info_label=filterinfo_label[f],
display_dict=displayDict,
summary_metrics=summary,
)
bundleList.append(bundle)
#########################
#########################
# Galaxies
#########################
#########################
# Run this per filter, to look at variations in counts
# of galaxies in blue bands?
displayDict = {
"group": "Galaxies",
"subgroup": "Galaxy Counts",
"order": 0,
"caption": None,
}
summary = [
metrics.AreaSummaryMetric(
area=18000,
reduce_func=np.sum,
decreasing=True,
metric_name="N Galaxies (18k)",
)
]
summary.append(metrics.SumMetric(metric_name="N Galaxies (all)"))
# make sure slicer has cache off
slicer = slicers.HealpixSlicer(nside=nside, use_cache=False)
for f in filterlist:
plotDict = {"percentile_clip": 95.0, "n_ticks": 5, "color": colors[f]}
metric = maf.GalaxyCountsMetricExtended(filter_band=f, redshift_bin="all", nside=nside)
displayDict["caption"] = (
f"Number of galaxies across the sky, in {f} band. Generally, full survey footprint."
)
displayDict["order"] = filterorders[f]
bundle = mb.MetricBundle(
metric,
slicer,
filtersqls[f],
plot_dict=plotDict,
display_dict=displayDict,
summary_metrics=summary,
plot_funcs=subsetPlots,
)
bundleList.append(bundle)
displayDict["subgroup"] = "Surface Brightness"
summary = [metrics.MedianMetric()]
for filtername in "ugrizy":
displayDict["caption"] = "Surface brightness limit in %s, no extinction applied." % filtername
displayDict["order"] = filterorders[f]
sql = 'filter="%s"' % filtername
metric = metrics.SurfaceBrightLimitMetric()
bundle = mb.MetricBundle(
metric,
healpixslicer,
sql,
display_dict=displayDict,
summary_metrics=summary,
plot_funcs=subsetPlots,
)
bundleList.append(bundle)
#########################
#########################
# Cosmology
#########################
#########################
bandpass = "i"
nfilters_needed = 6
lim_ebv = 0.2
offset = 0.1
mag_cuts = {
1: 24.75 - offset,
2: 25.12 - offset,
3: 25.35 - offset,
4: 25.5 - offset,
5: 25.62 - offset,
6: 25.72 - offset,
7: 25.8 - offset,
8: 25.87 - offset,
9: 25.94 - offset,
10: 26.0 - offset,
}
yrs = list(mag_cuts.keys())
maxYr = max(yrs)
displayDict = {"group": "Cosmology"}
subgroupCount = 1
displayDict["subgroup"] = f"{subgroupCount}: Static Science"
## Static Science
# Calculate the static science metrics - effective survey area,
# mean/median coadded depth, stdev of coadded depth and
# the 3x2ptFoM emulator.
dustmap = maps.DustMap(nside=nside, interp=False)
pix_area = hp.nside2pixarea(nside, degrees=True)
summaryMetrics = [
metrics.MeanMetric(),
metrics.MedianMetric(),
metrics.RmsMetric(),
metrics.CountRatioMetric(norm_val=1 / pix_area, metric_name="Effective Area (deg)"),
]
displayDict["order"] = 0
slicer = slicers.HealpixSlicer(nside=nside, use_cache=False)
for yr_cut in yrs:
ptsrc_lim_mag_i_band = mag_cuts[yr_cut]
sqlconstraint = "night <= %s" % (yr_cut * 365.25 + 0.5)
sqlconstraint += ' and scheduler_note not like "DD%"'
info_label = f"{bandpass} band non-DD year {yr_cut}"
ThreebyTwoSummary = maf.StaticProbesFoMEmulatorMetric(nside=nside, metric_name="3x2ptFoM")
m = metrics.ExgalM5WithCuts(
lsst_filter=bandpass,
n_filters=nfilters_needed,
extinction_cut=lim_ebv,
depth_cut=ptsrc_lim_mag_i_band,
)
caption = (
f"Cosmology/Static science metrics are based on evaluating the region "
f"of the sky that meets the requirements (in year {yr_cut} of coverage"
f"in all {nfilters_needed} bands, a lower E(B-V) value than {lim_ebv} "
f"and at least a coadded depth of {ptsrc_lim_mag_i_band} in {bandpass}. "
f"From there the effective survey area, coadded depth, standard deviation of "
f"the depth, and a 3x2pt static science figure of merit emulator are "
f"calculated using the dust-extinction coadded depth map (over that reduced "
f"footprint)."
)
displayDict["caption"] = caption
bundle = mb.MetricBundle(
m,
slicer,
sqlconstraint,
maps_list=[dustmap],
info_label=info_label,
summary_metrics=summaryMetrics + [ThreebyTwoSummary],
# , ThreebyTwoSummary_simple],
display_dict=displayDict,
)
displayDict["order"] += 1
bundleList.append(bundle)
## LSS Science
# The only metric we have from LSS is the NGals metric -
# which is similar to the GalaxyCountsExtended
# metric, but evaluated only on the depth/dust cuts footprint.
subgroupCount += 1
displayDict["subgroup"] = f"{subgroupCount}: LSS"
displayDict["order"] = 0
plotDict = {"n_ticks": 5}
# Have to include all filters in query to check for filter coverage.
# Galaxy numbers calculated using 'bandpass' images only though.
sqlconstraint = 'scheduler_note not like "DD%"'
info_label = f"{bandpass} band galaxies non-DD"
metric = maf.DepthLimitedNumGalMetric(
nside=nside,
filter_band=bandpass,
redshift_bin="all",
nfilters_needed=nfilters_needed,
lim_mag_i_ptsrc=mag_cuts[maxYr],
lim_ebv=lim_ebv,
)
summary = [
metrics.AreaSummaryMetric(
area=18000,
reduce_func=np.sum,
decreasing=True,
metric_name="N Galaxies (18k)",
)
]
summary.append(metrics.SumMetric(metric_name="N Galaxies (all)"))
slicer = slicers.HealpixSlicer(nside=nside, use_cache=False)
bundle = mb.MetricBundle(
metric,
slicer,
sqlconstraint,
plot_dict=plotDict,
info_label=info_label,
maps_list=[dustmap],
display_dict=displayDict,
summary_metrics=summary,
plot_funcs=subsetPlots,
)
bundleList.append(bundle)
## WL metrics
# Calculates the number of visits per pointing,
# after removing parts of the footprint due to dust/depth.
# Count visits in gri bands.
subgroupCount += 1
displayDict["subgroup"] = f"{subgroupCount}: WL"
displayDict["order"] = 0
sqlconstraint = 'scheduler_note not like "DD%" and (filter="g" or filter="r" or filter="i")'
info_label = "gri band non-DD"
minExpTime = 15
m = metrics.WeakLensingNvisits(
lsst_filter=bandpass,
depth_cut=mag_cuts[maxYr],
ebvlim=lim_ebv,
min_exp_time=minExpTime,
metric_name="WeakLensingNvisits",
)
slicer = slicers.HealpixSlicer(nside=nside, use_cache=False)
displayDict["caption"] = (
f"The number of visits per pointing, over a similarly reduced footprint as "
f"described above for the 3x2pt FOM, but allowing areas of sky with "
f"fewer than {nfilters_needed} filters. "
f"A cutoff of {minExpTime} removes very short visits."
)
bundle = mb.MetricBundle(
m,
slicer,
sqlconstraint,
maps_list=[dustmap],
info_label=info_label,
summary_metrics=standardStats,
display_dict=displayDict,
)
bundleList.append(bundle)
# Do the weak lensing per year
for year in np.arange(1, 10):
displayDict["order"] = year
sqlconstraint = (
'scheduler_note not like "DD%"'
+ ' and (filter="g" or filter="r" or filter="i") and night < %i' % (year * 365.25)
)
m = metrics.WeakLensingNvisits(
lsst_filter=bandpass,
depth_cut=mag_cuts[year],
ebvlim=lim_ebv,
min_exp_time=minExpTime,
metric_name="WeakLensingNvisits_gri_year%i" % year,
)
bundle = mb.MetricBundle(
m,
slicer,
sqlconstraint,
maps_list=[dustmap],
info_label=info_label,
summary_metrics=standardStats,
display_dict=displayDict,
)
bundleList.append(bundle)
m = metrics.RIZDetectionCoaddExposureTime(
det_bands=["g", "r", "i"], metric_name="gri_exposure_time_year%i" % year
)
bundle = mb.MetricBundle(
m,
slicer,
sqlconstraint,
maps_list=[dustmap],
info_label=info_label,
summary_metrics=standardStats,
display_dict=displayDict,
)
bundleList.append(bundle)
sqlconstraint = (
'scheduler_note not like "DD%"'
+ ' and (filter="r" or filter="i" or filter="z") and night < %i' % (year * 365.25)
)
m = metrics.WeakLensingNvisits(
lsst_filter=bandpass,
depth_cut=mag_cuts[year],
ebvlim=lim_ebv,
min_exp_time=minExpTime,
metric_name="WeakLensingNvisits_riz_year%i" % year,
)
bundle = mb.MetricBundle(
m,
slicer,
sqlconstraint,
maps_list=[dustmap],
info_label=info_label,
summary_metrics=standardStats,
display_dict=displayDict,
)
bundleList.append(bundle)
m = metrics.RIZDetectionCoaddExposureTime(
det_bands=["g", "r", "i"], metric_name="riz_exposure_time_year%i" % year
)
bundle = mb.MetricBundle(
m,
slicer,
sqlconstraint,
maps_list=[dustmap],
info_label=info_label,
summary_metrics=standardStats,
display_dict=displayDict,
)
bundleList.append(bundle)
subgroupCount += 1
displayDict["subgroup"] = f"{subgroupCount}: Camera Rotator"
metric1 = metrics.KuiperMetric("rotSkyPos")
metric2 = metrics.KuiperMetric("rotTelPos")
caption_root = "Kuiper statistic (0 is uniform, 1 is delta function) of the "
for f in filterlist:
for m in [metric1, metric2]:
plotDict = {"color": colors[f]}
displayDict["order"] = filterorders[f]
displayDict["caption"] = caption_root + f"{m.colname} for visits in {f} band."
bundleList.append(
mb.MetricBundle(
m,
healpixslicer,
filtersqls[f],
plot_dict=plotDict,
display_dict=displayDict,
summary_metrics=standardStats,
plot_funcs=subsetPlots,
)
)
# Kuiper per year in gri and riz
for year in np.arange(1, 10):
sqlconstraint = (
'scheduler_note not like "DD%"'
+ ' and (filter="g" or filter="r" or filter="i") and night < %i' % (year * 365.25)
)
metric1 = metrics.KuiperMetric("rotSkyPos", metric_name="Kuiper_rotSkyPos_gri_year%i" % year)
metric2 = metrics.KuiperMetric("rotTelPos", metric_name="Kuiper_rotTelPos_gri_year%i" % year)
for metric in [metric1, metric2]:
bundleList.append(
mb.MetricBundle(
metric,
healpixslicer,
sqlconstraint,
plot_dict={},
display_dict=displayDict,
summary_metrics=standardStats,
plot_funcs=subsetPlots,
)
)
##############
# SNe Ia
##############
displayDict = {
"group": "Cosmology",
"subgroup": "5: SNe Ia",
"order": 0,
"caption": "Expected discoveries of SNeIa, using the SNNSNMetric.",
}
sne_nside = 16
sn_summary = [
metrics.MedianMetric(),
metrics.MeanMetric(),
metrics.SumMetric(metric_name="Total detected"),
metrics.CountMetric(metric_name="Total on sky", mask_val=0),
]
snslicer = slicers.HealpixSlicer(nside=sne_nside, use_cache=False)
metric = metrics.SNNSNMetric(
n_bef=3,
n_aft=8,
coadd_night=True,
add_dust=False,
hard_dust_cut=0.25,
zmin=0.2,
zmax=0.5,
z_step=0.03,
daymax_step=3.0,
zlim_coeff=0.95,
gamma_name="gamma_WFD.hdf5",
verbose=False,
)
plotDict = {"percentile_clip": 95, "n_ticks": 5}
# Run without DDF observations
bundle = mb.MetricBundle(
metric,
snslicer,
"scheduler_note not like '%DD%'",
plot_dict=plotDict,
display_dict=displayDict,
info_label="DDF excluded",
summary_metrics=sn_summary,
plot_funcs=subsetPlots,
)
bundleList.append(bundle)
#########################
#########################
# AGN
#########################
#########################
# AGN structure function error
agnslicer = slicers.HealpixSlicer(nside=nside, use_cache=False)
dustmap = maps.DustMap(nside=nside)
displayDict = {"group": "AGN", "order": 0}
# Calculate the number of expected QSOs, in each band
for f in filterlist:
sql = filtersqls[f] + ' and scheduler_note not like "%DD%"'
md = filterinfo_label[f] + " and non-DD"
summaryMetrics = [metrics.SumMetric(metric_name="Total QSO")]
zmin = 0.3
m = metrics.QSONumberCountsMetric(
f,
units="mag",
extinction_cut=1.0,
qlf_module="Shen20",
qlf_model="A",
sed_model="Richards06",
zmin=zmin,
zmax=None,
)
displayDict["subgroup"] = "nQSO"
displayDict["caption"] = (
"The expected number of QSOs in regions of low dust extinction,"
f"based on detection in {f} bandpass."
)
displayDict["order"] = filterorders[f]
bundleList.append(
mb.MetricBundle(
m,
agnslicer,
constraint=sql,
info_label=md,
run_name=runName,
maps_list=[dustmap],
summary_metrics=summaryMetrics,
display_dict=displayDict,
)
)
# Calculate the expected AGN structure function error
# These agn test magnitude values are determined by
# looking at the baseline median m5 depths
# For v1.7.1 these values are:
agn_m5 = {"u": 22.89, "g": 23.94, "r": 23.5, "i": 22.93, "z": 22.28, "y": 21.5}
# And the expected medians SF error at those values is about 0.04
summaryMetrics = extended_summary()
summaryMetrics += [metrics.AreaThresholdMetric(upper_threshold=0.03, metric_name="AreaThreshold_0.03")]
summaryMetrics += [metrics.AreaThresholdMetric(upper_threshold=0.06, metric_name="AreaThreshold_0.06")]
for f in filterlist:
m = metrics.SFUncertMetric(
mag=agn_m5[f],
bins=np.logspace(0, np.log10(3650), 16),
metric_name="AGN SF_uncert",
)
plotDict = {"color": colors[f], "color_min": 0, "color_max": 0.2}
displayDict["order"] = filterorders[f]
displayDict["subgroup"] = "SFUncert"
displayDict["caption"] = (
"Expected AGN structure function uncertainties, based on observations in "
f"{f} band, for an AGN of magnitude {agn_m5[f]:.2f}"
)
bundleList.append(
mb.MetricBundle(
m,
agnslicer,
constraint=filtersqls[f],
info_label=filterinfo_label[f],
run_name=runName,
maps_list=[dustmap],
plot_dict=plotDict,
summary_metrics=summaryMetrics,
display_dict=displayDict,
)
)
# Run the TimeLag for each filter *and* all filters
nquist_threshold = 2.2
lag = 100
summaryMetrics = extended_summary()
summaryMetrics += [metrics.AreaThresholdMetric(lower_threshold=nquist_threshold)]
m = metrics.AgnTimeLagMetric(threshold=nquist_threshold, lag=lag)
for f in allfilterlist:
plotDict = {
"color": allcolors[f],
"color_min": 0,
"color_max": 5,
"percentile_clip": 95,
}
displayDict["order"] = allfilterorders[f]
displayDict["subgroup"] = "Time Lags"
displayDict["caption"] = (
f"Comparion of the time between visits compared to a defined sampling gap ({lag} days) in "
f"{f} band."
)
bundleList.append(
mb.MetricBundle(
m,
agnslicer,
constraint=allfiltersqls[f],
info_label=allfilterinfo_label[f],
run_name=runName,
maps_list=[dustmap],
plot_dict=plotDict,
summary_metrics=summaryMetrics,
display_dict=displayDict,
)
)
# Run the TimeLag for each filter *and* all filters but for 5 days
nquist_threshold = 2.2
lag = 5
summaryMetrics = extended_summary()
summaryMetrics += [metrics.AreaThresholdMetric(lower_threshold=nquist_threshold)]
m = metrics.AgnTimeLagMetric(threshold=nquist_threshold, lag=lag)
for f in allfilterlist:
plotDict = {
"color": allcolors[f],
"color_min": 0,
"color_max": 5,
"percentile_clip": 95,
}
displayDict["order"] = allfilterorders[f]
displayDict["subgroup"] = "Time Lags"
displayDict["caption"] = (
f"Comparion of the time between visits compared to a defined sampling gap ({lag} days) in "
f"{f} band."
)
bundleList.append(
mb.MetricBundle(
m,
agnslicer,
constraint=allfiltersqls[f],
info_label=allfilterinfo_label[f],
run_name=runName,
maps_list=[dustmap],
plot_dict=plotDict,
summary_metrics=summaryMetrics,
display_dict=displayDict,
)
)
#########################
#########################
# Strong Lensing
#########################
#########################
# TDC metric
# Calculate a subset of DESC WFD-related metrics.
if nside > 64:
nside_tdc = 64
else:
nside_tdc = nside
displayDict = {"group": "Strong Lensing"}
displayDict["subgroup"] = "Lens Time Delay"
tdc_plots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]
plotDict = {"x_min": 0.01, "color_min": 0.01, "percentile_clip": 70, "n_ticks": 5}
tdc_summary = [metrics.MeanMetric(), metrics.MedianMetric(), metrics.RmsMetric()]
# Ideally need a way to do better on calculating the summary metrics
# for the high accuracy area.
slicer = slicers.HealpixSlicer(nside=nside_tdc, use_cache=False)
tdcMetric = metrics.TdcMetric(metric_name="TDC")
dustmap = maps.DustMap(nside=nside_tdc, interp=False)
bundle = mb.MetricBundle(
tdcMetric,
slicer,
constraint="",
display_dict=displayDict,
plot_dict=plotDict,
plot_funcs=tdc_plots,
maps_list=[dustmap],
summary_metrics=tdc_summary,
)
bundleList.append(bundle)
# Strongly lensed SNe
displayDict["group"] = "Strong Lensing"
displayDict["subgroup"] = "SLSN"
displayDict["caption"] = "Strongly Lensed SNe, evaluated with the addition of galactic dust extinction."
metric = metrics.SNSLMetric()
slicer = slicers.HealpixSlicer(nside=nside_tdc, use_cache=False)
plotDict = {}
bundle = mb.MetricBundle(
metric,
slicer,
"",
run_name=runName,
plot_dict=plotDict,
summary_metrics=metrics.SumMetric(metric_name="Total detected"),
display_dict=displayDict,
)
bundleList.append(bundle)
#########################
#########################
# Variables and Transients
#########################
#########################
# Periodic Stars
displayDict = {"group": "Variables/Transients", "order": 0}
# PeriodicStarModulation metric
# colors for c type RRLyrae
displayDict["subgroup"] = "Periodic Star Modulation"
I_rrc_lmc = 18.9
V_rrc_lmc = 19.2
Vi = V_rrc_lmc - (2.742 * 0.08) - 18.5
Ii = I_rrc_lmc - (1.505 * 0.08) - 18.5
ii_rrc = Ii + 0.386 * 0.013 + 0.397 # 0.013 = (i-z)_0
gi_rrc = ii_rrc + 1.481 * (Vi - Ii) - 0.536
ri_rrc = (1 / 0.565) * (Vi - 0.435 * gi_rrc + 0.016)
ui_rrc = gi_rrc + 0.575
zi_rrc = ii_rrc - 0.013
yi_rrc = zi_rrc
rrc = np.array([ui_rrc, gi_rrc, ri_rrc, ii_rrc, zi_rrc, yi_rrc])
time_intervals = (15, 30)
distMod = (18, 19, 20, 21)
summaryStats = [metrics.MeanMetric(), metrics.MedianMetric(), metrics.MaxMetric()]
slicer = slicers.HealpixSlicer(nside=8)
for time_interval in time_intervals:
for dM in distMod:
displayDict["caption"] = (
"Periodic star modulation metric, evaluates the likelihood of "
"measuring variation in an RRLyrae periodic variable. "
"Evaluated based on the full LSST survey data. "
f"Searching time interval of {time_interval} and distance modulus {dM}."
)
displayDict["order"] += 1
m = maf.PeriodicStarModulationMetric(
period=0.3,
amplitude=0.3,
random_phase=True,
time_interval=time_interval,
n_monte=100,
period_tol=0.002,
amp_tol=0.01,
means=rrc + dM,
mag_tol=0.01,
n_bands=3,
)
# Run this on year 1-2.
bundle = mb.MetricBundle(
m,
slicer,
"night < 365.25*2",
display_dict=displayDict,
run_name=runName,
summary_metrics=summaryStats,
info_label=f"dm {dM} interval {time_interval} RRc Year 1-2",
)
bundleList.append(bundle)
# PulsatingStarRecovery metric (to be added; Marcella)
# our periodic star metrics
displayDict["subgroup"] = "Periodic Stars"
displayDict["order"] = 0
for period in [0.5, 1, 2]:
for magnitude in [21.0, 24.0]:
amplitudes = [0.05, 0.1, 1.0]
periods = [period] * len(amplitudes)
starMags = [magnitude] * len(amplitudes)
plotDict = {
"n_ticks": 3,
"color_min": 0,
"color_max": 3,
"x_min": 0,
"x_max": 3,
}
info_label = "P_%.1f_Mag_%.0f_Amp_0.05-0.1-1" % (period, magnitude)
sql = ""
displayDict["caption"] = (
"Metric evaluates if a periodic signal of period %.1f days could "
"be detected for an r=%i star. A variety of amplitudes of periodicity "
"are tested: [1, 0.1, and 0.05] mag amplitudes, which correspond to "
"metric values of [1, 2, or 3]. " % (period, magnitude)
)
metric = metrics.PeriodicDetectMetric(
periods=periods,
star_mags=starMags,
amplitudes=amplitudes,
metric_name="PeriodicDetect",
)
bundle = mb.MetricBundle(
metric,
healpixslicer,
sql,
info_label=info_label,
display_dict=displayDict,
plot_dict=plotDict,
plot_funcs=subsetPlots,
summary_metrics=standardStats,
)
bundleList.append(bundle)
displayDict["order"] += 1
# our periodic star metrics - first two years only
displayDict["order"] = 1
for period in [0.5, 1, 2]:
for magnitude in [21.0, 24.0]:
amplitudes = [0.05, 0.1, 1.0]
periods = [period] * len(amplitudes)
starMags = [magnitude] * len(amplitudes)
plotDict = {
"n_ticks": 3,
"color_min": 0,
"color_max": 3,
"x_min": 0,
"x_max": 3,
}
info_label = "P_%.1f_Mag_%.0f_Amp_0.05-0.1-1 Yr 2" % (period, magnitude)
sql = "night < 365.5*2"
displayDict["caption"] = (
"Metric evaluates if a periodic signal of period %.1f days could "
"be detected for an r=%i star, within the first two years. "
"A variety of amplitudes of periodicity "
"are tested: [1, 0.1, and 0.05] mag amplitudes, which correspond to "
"metric values of [1, 2, or 3]. " % (period, magnitude)
)
metric = metrics.PeriodicDetectMetric(
periods=periods,
star_mags=starMags,
amplitudes=amplitudes,
metric_name="PeriodicDetect",
)
bundle = mb.MetricBundle(
metric,
healpixslicer,
sql,
info_label=info_label,
display_dict=displayDict,
plot_dict=plotDict,
plot_funcs=subsetPlots,
summary_metrics=standardStats,
)
bundleList.append(bundle)
displayDict["order"] += 1
# Tidal Disruption Events
displayDict["subgroup"] = "TDE"
displayDict["caption"] = "TDE lightcurves that could be identified"
displayDict["order"] = 0
metric = maf.TdePopMetric(mjd0=mjd0)
tdeslicer = maf.generate_tde_pop_slicer()
bundle = mb.MetricBundle(
metric,
tdeslicer,
"",
run_name=runName,
summary_metrics=lightcurve_summary(),
display_dict=displayDict,
plot_funcs=[plots.HealpixSkyMap()],
)
bundleList.append(bundle)
displayDict["caption"] = "TDE lightcurves quality"
metric = maf.TdePopMetricQuality(metric_name="TDE_Quality")
bundle = mb.MetricBundle(
metric,
tdeslicer,
"",
run_name=runName,
summary_metrics=lightcurve_summary(),
display_dict=displayDict,
plot_funcs=[plots.HealpixSkyMap()],
)
bundleList.append(bundle)
# Microlensing events
displayDict["subgroup"] = "Microlensing"
plotDict = {"nside": 128}
n_events = 10000
# Let's evaluate a variety of crossing times
crossing_times = [
[1, 5],
[5, 10],
[10, 20],
[20, 30],
[30, 60],
[60, 90],
[100, 200],
[200, 500],
[500, 1000],
]
metric = maf.MicrolensingMetric()
summaryMetrics = maf.batches.lightcurve_summary()
order = 0
for crossing in crossing_times:
displayDict["caption"] = "Microlensing events with crossing times between %i to %i days." % (
crossing[0],
crossing[1],
)
displayDict["order"] = order
order += 1
slicer = maf.generate_microlensing_slicer(
min_crossing_time=crossing[0],
max_crossing_time=crossing[1],
n_events=n_events,
)
bundleList.append(
maf.MetricBundle(
metric,
slicer,
None,
run_name=runName,
summary_metrics=summaryMetrics,
info_label=f"tE {crossing[0]}_{crossing[1]} days",
display_dict=displayDict,
plot_dict=plotDict,
plot_funcs=[plots.HealpixSkyMap()],
)
)
if long_microlensing:
n_events = 10000
# Let's evaluate a subset of the crossing times for these
crossing_times = [
[10, 20],
[20, 30],
[30, 60],
[200, 500],
]
metric_Npts = maf.MicrolensingMetric(metric_calc="Npts")
summaryMetrics = maf.batches.microlensing_summary(metric_type="Npts")
order = 0
for crossing in crossing_times:
slicer = maf.generate_microlensing_slicer(
min_crossing_time=crossing[0],
max_crossing_time=crossing[1],
n_events=n_events,
)
displayDict["caption"] = "Microlensing events with crossing times between %i to %i days." % (
crossing[0],
crossing[1],
)
displayDict["order"] = order
order += 1
bundleList.append(
maf.MetricBundle(
metric_Npts,
slicer,
None,
run_name=runName,
summary_metrics=summaryMetrics,
info_label=f"tE {crossing[0]}_{crossing[1]} days",
display_dict=displayDict,
plot_dict=plotDict,
plot_funcs=[],
)
)
metric_Fisher = maf.MicrolensingMetric(metric_calc="Fisher")
summaryMetrics = maf.batches.microlensing_summary(metric_type="Fisher")
order = 0
for crossing in crossing_times:
displayDict["caption"] = "Microlensing events with crossing times between %i to %i days." % (
crossing[0],
crossing[1],
)
displayDict["order"] = order
order += 1
slicer = maf.generate_microlensing_slicer(
min_crossing_time=crossing[0],
max_crossing_time=crossing[1],
n_events=n_events,
)
bundleList.append(
maf.MetricBundle(
metric_Fisher,
slicer,
None,
run_name=runName,
summary_metrics=summaryMetrics,
info_label=f"tE {crossing[0]}_{crossing[1]} days",
display_dict=displayDict,
plot_dict=plotDict,
plot_funcs=[],
)
)
# Kilonovae metric
displayDict["group"] = "Variables/Transients"
displayDict["subgroup"] = "KNe"
n_events = 500000
caption = f"KNe metric, injecting {n_events} lightcurves over the entire sky, GW170817-like only."
caption += " Ignoring DDF observations."
displayDict["caption"] = caption
displayDict["order"] = 0
# Kilonova parameters
inj_params_list = [
{"mej_dyn": 0.005, "mej_wind": 0.050, "phi": 30, "theta": 25.8},
]
filename = maf.get_kne_filename(inj_params_list)
kneslicer = maf.generate_kn_pop_slicer(n_events=n_events, n_files=len(filename), d_min=10, d_max=600)
metric = maf.KNePopMetric(
output_lc=False,
file_list=filename,
metric_name="KNePopMetric_single",
mjd0=mjd0,
)
bundle = mb.MetricBundle(
metric,
kneslicer,
"scheduler_note not like 'DD%'",
run_name=runName,
info_label="single model",
summary_metrics=lightcurve_summary(),
display_dict=displayDict,
plot_funcs=[plots.HealpixSkyMap()],
)
bundleList.append(bundle)
n_events = 500000
caption = f"KNe metric, injecting {n_events} lightcurves over the entire sky, entire model population."
caption += " Ignoring DDF observations."
displayDict["caption"] = caption
displayDict["order"] = 1
# Kilonova parameters
filename = maf.get_kne_filename(None)
kneslicer_allkne = maf.generate_kn_pop_slicer(
n_events=n_events, n_files=len(filename), d_min=10, d_max=600
)
metric_allkne = maf.KNePopMetric(output_lc=False, file_list=filename, metric_name="KNePopMetric_all")
bundle = mb.MetricBundle(
metric_allkne,
kneslicer_allkne,
"scheduler_note not like 'DD%'",
run_name=runName,
info_label="all models",
summary_metrics=lightcurve_summary(),
display_dict=displayDict,
plot_funcs=[plots.HealpixSkyMap()],
)
bundleList.append(bundle)
# General time intervals
displayDict = {
"group": "TimeGaps",
"subgroup": "Time",
"caption": None,
"order": 0,
}
# Logarithmically spaced gaps from 30s to 5 years
tMin = 30 / 60 / 60 / 24.0 # 30s
tMax = 5 * 365.25 # 5 years
tgaps = np.logspace(np.log10(tMin), np.log10(tMax), 100)
for f in filterlist:
m1 = metrics.TgapsMetric(bins=tgaps, all_gaps=False)
plotDict = {
"bins": tgaps,
"xscale": "log",
"y_min": 0,
"figsize": (8, 6),
"ylabel": "Number of observation pairs",
"xlabel": "Time gap between pairs of visits (days)",
"color": colors[f],
}
plotFuncs = [plots.SummaryHistogram()]
displayDict["caption"] = (
f"Summed Histogram of time between visits at each point in the sky, " f"in {f} band(s)."
)
displayDict["order"] = filterorders[f]
bundleList.append(
mb.MetricBundle(
m1,
healpixslicer,
constraint=filtersqls[f],
info_label=filterinfo_label[f],
run_name=runName,
plot_dict=plotDict,
plot_funcs=plotFuncs,
display_dict=displayDict,
)
)
gaps = [3.0, 7.0, 24.0]
for gap in gaps:
summary_stats = []
summary_stats.append(
metrics.AreaSummaryMetric(
area=18000,
reduce_func=np.median,
decreasing=True,
metric_name="Median N gaps in %s at %ihr in top 18k" % (f, gap),
)
)
summary_stats.append(
metrics.AreaSummaryMetric(
area=18000,
reduce_func=np.mean,
decreasing=True,
metric_name="Mean N gaps in %s at %ihr in top 18k" % (f, gap),
)
)
summary_stats.append(metrics.MeanMetric())
summary_stats.append(metrics.MedianMetric())
m2 = metrics.GapsMetric(
time_scale=gap,
metric_name="Gaps_%ihr" % gap,
)
plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()]
plotDict = {"color_min": 0, "color": colors[f], "percentile_clip": 95}
displayDict["caption"] = (
"Number of times the timescale of ~%i hours is sampled in %s band(s)." % (gap, f)
)
displayDict["order"] = filterorders[f]
bundleList.append(
mb.MetricBundle(
m2,
healpixslicer,
constraint=filtersqls[f],
info_label=filterinfo_label[f],
run_name=runName,
summary_metrics=summary_stats,
plot_dict=plotDict,
plot_funcs=plotFuncs,
display_dict=displayDict,
)
)
# FilterPairTgaps Metric (for TVS)
m1 = maf.FilterPairTGapsMetric()
plotDict = {"color_min": 0, "color_max": 1500, "x_min": 0, "x_max": 2000}
displayDict["order"] = 0
displayDict["caption"] = (
"Evaluate the distribution of filter pairs and time gaps at each point in "
"the sky. The time gaps are evaluated on a logarithmic spacing "
"from 0-100 days for pairs of filters, and 0-3650 days for same filters."
)
summarystats = [
metrics.MedianMetric(),
metrics.MeanMetric(),
metrics.PercentileMetric(percentile=80),
]
bundle = maf.MetricBundle(
m1,
healpixslicer,
None,
run_name=runName,
summary_metrics=summarystats,
plot_dict=plotDict,
display_dict=displayDict,
)
bundleList.append(bundle)
# Presto KNe metric
displayDict["group"] = "Variables/Transients"
displayDict["subgroup"] = "Presto KNe"
displayDict["caption"] = "Probability of detecting and classifying a KNe"
prestoslicer = maf.generate_presto_pop_slicer(skyregion="extragalactic")
metric = maf.PrestoColorKNePopMetric(
skyregion="extragalactic",
metric_name="PrestoKNe",
mjd0=mjd0,
)
summaryMetrics_kne = [maf.MedianMetric(), maf.SumMetric()]
bundleList.append(
maf.MetricBundle(
metric,
prestoslicer,
None,
run_name=runName,
display_dict=displayDict,
summary_metrics=summaryMetrics_kne,
)
)
# color plus slope metrics
displayDict["group"] = "Variables/Transients"
displayDict["subgroup"] = "Color and slope"
displayDict["caption"] = "Number of times a color and slope are measured in a night"
sql = "visitExposureTime > 19"
metric = maf.ColorSlopeMetric()
summaryMetrics_cs = [maf.SumMetric()]
bundleList.append(
maf.MetricBundle(
metric,
healpixslicer,
sql,
run_name=runName,
display_dict=displayDict,
summary_metrics=summaryMetrics_cs,
)
)
displayDict["group"] = "Variables/Transients"
displayDict["subgroup"] = "Color and slope"
displayDict["caption"] = "Number of times a color and slope are measured over 2 nights."
sql = "visitExposureTime > 19"
metric = maf.ColorSlope2NightMetric()
summaryMetrics_cs = [maf.SumMetric()]
bundleList.append(
maf.MetricBundle(
metric,
healpixslicer,
sql,
run_name=runName,
display_dict=displayDict,
summary_metrics=summaryMetrics_cs,
)
)
# XRB metric
displayDict["subgroup"] = "XRB"
displayDict["order"] = 0
displayDict["caption"] = "Number or characterization of XRBs."
n_events = 10000
xrbslicer = maf.generate_xrb_pop_slicer(n_events=n_events)
metric = maf.XRBPopMetric(output_lc=False, mjd0=mjd0)
xrb_summaryMetrics = [
maf.SumMetric(metric_name="Total detected"),
maf.CountMetric(metric_name="Total lightcurves in footprint"),
maf.CountMetric(metric_name="Total lightcurves on sky", mask_val=0),
maf.MeanMetric(metric_name="Fraction detected in footprint"),
maf.MeanMetric(mask_val=0, metric_name="Fraction detected of total"),
maf.MedianMetric(metric_name="Median"),
maf.MeanMetric(metric_name="Mean"),
]
bundleList.append(
maf.MetricBundle(
metric,
xrbslicer,
"",
run_name=runName,
summary_metrics=xrb_summaryMetrics,
display_dict=displayDict,
)
)
#########################
#########################
# Galactic Plane - TVS/MW
#########################
#########################
displayDict = {"group": "Galactic Plane", "subgroup": ""}
footprint_summaries = [metrics.SumMetric()]
footprint_plotDicts = {"percentile_clip": 95}
filter_summaries = [
metrics.MeanMetric(),
metrics.MedianMetric(),
metrics.RmsMetric(),
metrics.AreaThresholdMetric(lower_threshold=0.8),
]
filter_plotdicts = {"color_min": 0, "color_max": 2, "x_min": 0, "x_max": 5}
timescale_summaries = [
metrics.SumMetric(),
metrics.MedianMetric(),
metrics.AreaThresholdMetric(lower_threshold=0.5),
]
timescale_plotdicts = {"color_min": 0, "color_max": 1, "x_min": 0, "x_max": 1}
galactic_plane_map_keys = maps.galplane_priority_map(nside=64, get_keys=True)
science_maps = [
s.replace("galplane_priority_", "").split(":")[0] for s in galactic_plane_map_keys if "sum" in s
]
slicer = slicers.HealpixSlicer(nside=64, use_cache=False)
sql = None
bundles = {}
for m in science_maps:
displayDict["subgroup"] = m
displayDict["caption"] = f"Footprint relevant for {m} galactic plane science case."
footprintmetric = metrics.GalPlaneFootprintMetric(science_map=m)
bundles[f"{m} footprint"] = mb.MetricBundle(
footprintmetric,
slicer,
sql,
plot_dict=footprint_plotDicts,
run_name=runName,
summary_metrics=footprint_summaries,
display_dict=displayDict,
)
displayDict["caption"] = f"Filter balance in region of {m} galactic plane science case."
filtermetric = metrics.GalPlaneTimePerFilterMetric(science_map=m)
bundles[f"{m} filter"] = mb.MetricBundle(
filtermetric,
slicer,
sql,
plot_dict=filter_plotdicts,
run_name=runName,
summary_metrics=filter_summaries,
display_dict=displayDict,
)
displayDict["caption"] = f"Timescale intervals in region of {m} galactic plane science case."
visit_timescalesmetric = metrics.GalPlaneVisitIntervalsTimescaleMetric(science_map=m)
bundles[f"{m} visit intervals"] = mb.MetricBundle(
visit_timescalesmetric,
slicer,
sql,
plot_dict=timescale_plotdicts,
run_name=runName,
summary_metrics=timescale_summaries,
display_dict=displayDict,
)
displayDict["caption"] = f"Seasonal coverage in region of {m} galactic plane science case."
season_timescalemetric = metrics.GalPlaneSeasonGapsTimescaleMetric(science_map=m)
bundles[f"{m} season gaps"] = mb.MetricBundle(
season_timescalemetric,
slicer,
sql,
plot_dict=timescale_plotdicts,
run_name=runName,
summary_metrics=timescale_summaries,
display_dict=displayDict,
)
bundleList += list(bundles.values())
#########################
#########################
# Milky Way
#########################
#########################
displayDict = {"group": "Milky Way", "subgroup": ""}
displayDict["subgroup"] = "N stars"
slicer = slicers.HealpixSlicer(nside=nside, use_cache=False)
sum_stats = [metrics.SumMetric(metric_name="Total N Stars, crowding")]
for f in filterlist:
stellar_map = maps.StellarDensityMap(filtername=f)
displayDict["order"] = filterorders[f]
displayDict["caption"] = (
"Number of stars in %s band with an measurement uncertainty due to crowding "
"of less than 0.2 mag" % f
)
# Configure the NstarsMetric - note 'filtername' refers to the
# filter in which to evaluate crowding
metric = metrics.NstarsMetric(
crowding_error=0.2,
filtername=f,
ignore_crowding=False,
maps=[],
)
plotDict = {"n_ticks": 5, "log_scale": True, "color_min": 100}
bundle = mb.MetricBundle(
metric,
slicer,
filtersqls[f],
run_name=runName,
summary_metrics=sum_stats,
plot_funcs=subsetPlots,
plot_dict=plotDict,
display_dict=displayDict,
maps_list=[stellar_map],
)
bundleList.append(bundle)
slicer = slicers.HealpixSlicer(nside=nside, use_cache=False)
sum_stats = [metrics.SumMetric(metric_name="Total N Stars, no crowding")]
for f in filterlist:
stellar_map = maps.StellarDensityMap(filtername=f)
displayDict["order"] = filterorders[f]
displayDict["caption"] = (
"Number of stars in %s band with an measurement uncertainty "
"of less than 0.2 mag, not considering crowding" % f
)
# Configure the NstarsMetric - note 'filtername' refers to the
# filter in which to evaluate crowding
metric = metrics.NstarsMetric(
crowding_error=0.2,
filtername=f,
ignore_crowding=True,
metric_name="Nstars_no_crowding",
maps=[],
)
plotDict = {"n_ticks": 5, "log_scale": True, "color_min": 100}
bundle = mb.MetricBundle(
metric,
slicer,
filtersqls[f],
run_name=runName,
summary_metrics=sum_stats,
plot_funcs=subsetPlots,
plot_dict=plotDict,
display_dict=displayDict,
maps_list=[stellar_map],
)
bundleList.append(bundle)
# Brown Dwarf Volume
displayDict["subgroup"] = "Brown Dwarf"
displayDict["order"] = 0
l7_bd_mags = {"i": 20.09, "z": 18.18, "y": 17.13}
displayDict["caption"] = (
f"The expected maximum distance at which an L7 brown dwarf with magnitude {l7_bd_mags} "
f"would have a parallax SNR of 10.0. The summary statistic represents the volume enclosed by "
f"the result of this metric (BDParallaxMetric)."
)
sum_stats = [metrics.VolumeSumMetric(nside=nside)]
metric = metrics.BDParallaxMetric(mags=l7_bd_mags, metric_name="Brown Dwarf, L7")
sql = ""
plotDict = {}
bundleList.append(
mb.MetricBundle(
metric,
healpixslicer,
sql,
plot_dict=plotDict,
summary_metrics=sum_stats,
display_dict=displayDict,
run_name=runName,
)
)
l4_bd_mags = {"i": 18.35, "z": 16.68, "y": 15.66}
displayDict["caption"] = (
f"The expected maximum distance at which an L4 brown dwarf with magnitude {l4_bd_mags} "
f"would have a parallax SNR of 10.0. The summary statistic represents the total volume enclosed "
f"by the result of this metric (BDParallaxMetric)."
)
metric = metrics.BDParallaxMetric(mags=l4_bd_mags, metric_name="Brown Dwarf, L4")
bundleList.append(
mb.MetricBundle(
metric,
healpixslicer,
sql,
plot_dict=plotDict,
summary_metrics=sum_stats,
display_dict=displayDict,
run_name=runName,
)
)
displayDict["subgroup"] = "Young Stellar Objects"
displayDict["caption"] = (
"The number of expected Young Stellar Objects with age t<10 Myr and "
"mass >0.3 solar masses, using coadded depths in g, r and i bands."
)
# The underlying dustmap is nside=64, but can be resampled
nside_yso = 64
dustmap3d = maps.DustMap3D(nside=nside_yso)
sql = ""
# Let's plug in the magnitudes for one type
metric = maf.maf_contrib.NYoungStarsMetric()
slicer = maf.slicers.HealpixSlicer(nside=nside_yso, use_cache=False)
summaryStats = [maf.metrics.SumMetric()]
plotDict = {"log_scale": True, "color_min": 1}
bundleList.append(
maf.metric_bundles.MetricBundle(
metric,
slicer,
sql,
maps_list=[dustmap3d],
plot_dict=plotDict,
summary_metrics=summaryStats,
run_name=runName,
display_dict=displayDict,
)
)
## Local Volume Dwarf Satellites
displayDict["group"] = "Local Volume"
displayDict["subgroup"] = "LV dwarf satellites"
displayDict["order"] = 0
# First the known dwarf satellite galaxies
displayDict["caption"] = (
"Predicted magnitude detection limit (including stellar density and "
"star-galaxy separation) at the location of known LV dwarf galaxies. "
)
i_starMap = maf.maps.StellarDensityMap(filtername="i")
lv_slicer = maf.maf_contrib.generate_known_lv_dwarf_slicer()
lv_metric = maf.maf_contrib.LVDwarfsMetric()
sqlconstraint = '(filter = "i" OR filter = "g")'
info_label = "gi"
cutoff = -6.4
summary_metrics = [
maf.metrics.CountBeyondThreshold(lower_threshold=cutoff, metric_name=f"Total detected {cutoff}"),
maf.metrics.CountBeyondThreshold(lower_threshold=-7.0, metric_name="Total detected -7.0"),
]
plotDict = {"n_ticks": 7}
bundle = maf.MetricBundle(
lv_metric,
lv_slicer,
sqlconstraint,
maps_list=[i_starMap],
summary_metrics=summary_metrics,
info_label=info_label,
display_dict=displayDict,
plot_dict=plotDict,
)
bundleList.append(bundle)
displayDict["order"] += 1
displayDict["caption"] = (
"Predicted magnitude detection limit (including stellar density and "
"star-galaxy separation), over the whole sky to a distance of 4 Mpc."
)
lv_metric2 = maf.maf_contrib.LVDwarfsMetric(distlim=4.0 * u.Mpc) # for a distance limit, healpix map
dustmap = maf.maps.DustMap(nside=32)
lv_healpix_slicer = maf.slicers.HealpixSlicer(nside=32, use_cache=False)
summary_area = maf.AreaThresholdMetric(lower_threshold=cutoff, metric_name=f"Area M_v>{cutoff}")
bundle = maf.MetricBundle(
lv_metric2,
lv_healpix_slicer,
sqlconstraint,
maps_list=[i_starMap, dustmap],
info_label=info_label,
display_dict=displayDict,
summary_metrics=summary_area,
plot_dict=plotDict,
)
bundleList.append(bundle)
displayDict["order"] += 1
displayDict["caption"] = (
"Predicted magnitude detection limit (including stellar density and "
"star-galaxy separation), over the southern celestial pole,"
"to a distance of 0.1 Mpc."
)
sqlconstraint = '(filter = "i" OR filter = "g") and fieldDec < -60'
info_label = "gi SCP"
lv_metric3 = maf.maf_contrib.LVDwarfsMetric(distlim=0.1 * u.Mpc) # for a distance limit, healpix map
summary_area = maf.metrics.AreaThresholdMetric(lower_threshold=0.0, metric_name="Area M_v>0.0")
summary_median = maf.metrics.MedianMetric()
bundle = maf.MetricBundle(
lv_metric3,
lv_healpix_slicer,
sqlconstraint,
maps_list=[i_starMap, dustmap],
info_label=info_label,
display_dict=displayDict,
plot_dict=plotDict,
summary_metrics=[summary_area, summary_median],
)
bundleList.append(bundle)
#########################
#########################
# Per year things
#########################
#########################
plotDict = {}
night_cuttoffs = np.arange(1, 11, 1) * 365.25
slicer = slicers.HealpixSlicer(nside=nside)
for i, cuttoff in enumerate(night_cuttoffs):
for filtername in "ugrizy":
sql = "night<%i and filter='%s'" % (cuttoff, filtername)
metric = metrics.Coaddm5Metric(metric_name="coadd %s, year<%i" % (filtername, i + 1))
displayDict = {"group": "Per year", "subgroup": "Coadds"}
bundle = mb.MetricBundle(
metric,
slicer,
sql,
run_name=runName,
summary_metrics=standardStats,
plot_funcs=subsetPlots,
plot_dict=plotDict,
display_dict=displayDict,
)
bundleList.append(bundle)
metric = metrics.SnrWeightedMetric(
col="seeingFwhmEff",
metric_name="SNR-weighted FWHMeff %s, year<%i" % (filtername, i + 1),
)
displayDict = {"group": "Per year", "subgroup": "Seeing"}
bundle = mb.MetricBundle(
metric,
slicer,
sql,
run_name=runName,
summary_metrics=standardStats,
plot_funcs=subsetPlots,
plot_dict=plotDict,
display_dict=displayDict,
)
bundleList.append(bundle)
#########################
#########################
# Scaling numbers
#########################
#########################
displayDict = {"group": "Scaling Numbers", "subgroup": ""}
displayDict["subgroup"] = "N gals"
sql = 'filter="i"'
metric = metrics.NgalScaleMetric()
# galaxy counting uses dustmap
slicer = slicers.HealpixSlicer(nside=nside, use_cache=False)
displayDict["caption"] = (
"Approximate number of resolvable galaxies in i band, scaled by the "
"coadded depth and median seeing. A dust and magnitude cut has been applied."
)
bundle = mb.MetricBundle(
metric,
slicer,
sql,
run_name=runName,
summary_metrics=[metrics.SumMetric()],
plot_funcs=subsetPlots,
plot_dict=plotDict,
display_dict=displayDict,
)
bundleList.append(bundle)
displayDict["subgroup"] = "Lightcurve Pts"
metric = metrics.NlcPointsMetric(nside=nside)
# NlcPoints metric uses star density maps
slicer = slicers.HealpixSlicer(nside=nside, use_cache=False)
displayDict["caption"] = (
"Approximate number of expected stellar measurements (nstars * nobs) "
"in all filters, where the limiting magnitude for at least 10 visits "
"is fainter than 21st magnitude, using a TRILEGAL stellar density map."
)
bundle = mb.MetricBundle(
metric,
slicer,
None,
run_name=runName,
summary_metrics=[metrics.SumMetric()],
plot_funcs=subsetPlots,
plot_dict=plotDict,
display_dict=displayDict,
)
bundleList.append(bundle)
# Set the run_name for all bundles and return the bundleDict.
for b in bundleList:
b.set_run_name(runName)
bundleDict = mb.make_bundles_dict_from_list(bundleList)
return bundleDict