__all__ = ("glanceBatch",)
import warnings
from rubin_scheduler.scheduler.utils import EuclidOverlapFootprint
from rubin_scheduler.utils import ddf_locations
import rubin_sim.maf.metric_bundles as metric_bundles
import rubin_sim.maf.metrics as metrics
import rubin_sim.maf.plots as plots
import rubin_sim.maf.slicers as slicers
import rubin_sim.maf.stackers as stackers
from .col_map_dict import col_map_dict
from .common import standard_summary
from .hourglass_batch import hourglassPlots
from .slew_batch import slewBasics
[docs]
def glanceBatch(
colmap=None,
run_name="run_name",
nside=64,
filternames=("u", "g", "r", "i", "z", "y"),
nyears=10,
pairnside=32,
sql_constraint=None,
slicer_camera="LSST",
):
"""Generate a handy set of metrics that give a quick overview
of how well a survey performed.
This is a meta-set of other batches, to some extent.
Parameters
----------
colmap : `dict`, optional
A dictionary with a mapping of column names.
run_name : `str`, optional
The name of the simulated survey.
nside : `int`, optional
The nside for the healpix slicers.
filternames : `list` of `str`, optional
The list of individual filters to use when running metrics.
There is always an all-visits version of the metrics run as well.
nyears : `int`, optional
How many years to attempt to make hourglass plots for
pairnside : `int`, optional
nside to use for the pair fraction metric
(it's slow, so nice to use lower resolution)
sql_constraint : `str` or None, optional
Additional SQL constraint to apply to all metrics.
slicer_camera : `str`
Sets which spatial slicer to use. options are 'LSST' and 'ComCam'
Returns
-------
metric_bundleDict : `dict` of `maf.MetricBundle`
"""
if isinstance(colmap, str):
raise ValueError("colmap must be a dictionary, not a string")
if colmap is None:
colmap = col_map_dict()
bundle_list = []
if sql_constraint is None:
sqlC = ""
else:
sqlC = "(%s) and" % sql_constraint
if slicer_camera == "LSST":
spatial_slicer = slicers.HealpixSlicer
elif slicer_camera == "ComCam":
spatial_slicer = slicers.HealpixComCamSlicer
else:
raise ValueError("Camera must be LSST or Comcam")
sql_per_filt = ['%s %s="%s"' % (sqlC, colmap["filter"], filtername) for filtername in filternames]
sql_per_and_all_filters = [sql_constraint] + sql_per_filt
standardStats = standard_summary()
subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]
# Super basic things
displayDict = {"group": "Basic Stats", "order": 1}
sql = sql_constraint
slicer = slicers.UniSlicer()
# Length of Survey
metric = metrics.FullRangeMetric(col=colmap["mjd"], metric_name="Length of Survey (days)")
bundle = metric_bundles.MetricBundle(metric, slicer, sql, display_dict=displayDict)
bundle_list.append(bundle)
# Total number of filter changes
metric = metrics.NChangesMetric(col=colmap["filter"], order_by=colmap["mjd"])
bundle = metric_bundles.MetricBundle(metric, slicer, sql, display_dict=displayDict)
bundle_list.append(bundle)
# Total open shutter fraction
metric = metrics.OpenShutterFractionMetric(
slew_time_col=colmap["slewtime"],
exp_time_col=colmap["exptime"],
visit_time_col=colmap["visittime"],
)
bundle = metric_bundles.MetricBundle(metric, slicer, sql, display_dict=displayDict)
bundle_list.append(bundle)
# Total effective exposure time
metric = metrics.MeanMetric(col="t_eff")
teff_stacker = stackers.TeffStacker(normed=True)
for sql in sql_per_and_all_filters:
bundle = metric_bundles.MetricBundle(
metric, slicer, sql, stacker_list=[teff_stacker], display_dict=displayDict
)
bundle_list.append(bundle)
# Number of observations, all and each filter
metric = metrics.CountMetric(col=colmap["mjd"], metric_name="Number of Exposures")
for sql in sql_per_and_all_filters:
bundle = metric_bundles.MetricBundle(metric, slicer, sql, display_dict=displayDict)
bundle_list.append(bundle)
# The alt/az plots of all the pointings
slicer = spatial_slicer(
nside=nside,
lat_col=colmap["alt"],
lon_col=colmap["az"],
lat_lon_deg=colmap["raDecDeg"],
use_cache=False,
)
metric = metrics.CountMetric(colmap["mjd"], metric_name="Nvisits as function of Alt/Az")
plotFuncs = [plots.LambertSkyMap()]
plotDict = {"norm": "log"}
for sql in sql_per_and_all_filters:
bundle = metric_bundles.MetricBundle(
metric,
slicer,
sql,
plot_funcs=plotFuncs,
display_dict=displayDict,
plot_dict=plotDict,
)
bundle_list.append(bundle)
# alt az of long gaps
sql = "scheduler_note = 'long'"
metric = metrics.CountMetric(colmap["mjd"], metric_name="Nvisits long")
bundle = metric_bundles.MetricBundle(
metric,
slicer,
sql,
plot_funcs=plotFuncs,
display_dict=displayDict,
plot_dict=plotDict,
)
bundle_list.append(bundle)
sql = "scheduler_note like 'blob_long%'"
metric = metrics.CountMetric(colmap["mjd"], metric_name="Nvisits blob long")
bundle = metric_bundles.MetricBundle(
metric,
slicer,
sql,
plot_funcs=plotFuncs,
display_dict=displayDict,
plot_dict=plotDict,
)
bundle_list.append(bundle)
sql = "scheduler_note like '%neo%' or scheduler_note like '%near_sun%'"
metric = metrics.CountMetric(colmap["mjd"], metric_name="Nvisits twilight near sun")
bundle = metric_bundles.MetricBundle(
metric,
slicer,
sql,
plot_funcs=plotFuncs,
display_dict=displayDict,
plot_dict=plotDict,
)
bundle_list.append(bundle)
# alt,az pf ToO
sql = "scheduler_note like 'ToO%'"
metric = metrics.CountMetric(colmap["mjd"], metric_name="Nvisits long")
bundle = metric_bundles.MetricBundle(
metric,
slicer,
sql,
plot_funcs=plotFuncs,
display_dict=displayDict,
plot_dict=plotDict,
)
bundle_list.append(bundle)
# Things to check per night
# Open Shutter per night
displayDict = {"group": "Pointing Efficency", "order": 2}
slicer = slicers.OneDSlicer(slice_col_name=colmap["night"], bin_size=1, bin_min=-0.5)
metric = metrics.OpenShutterFractionMetric(
slew_time_col=colmap["slewtime"],
exp_time_col=colmap["exptime"],
visit_time_col=colmap["visittime"],
)
sql = sql_constraint
bundle = metric_bundles.MetricBundle(
metric, slicer, sql, summary_metrics=standardStats, display_dict=displayDict
)
bundle_list.append(bundle)
# Number of filter changes per night
slicer = slicers.OneDSlicer(slice_col_name=colmap["night"], bin_size=1, bin_min=-0.5)
metric = metrics.NChangesMetric(
col=colmap["filter"], order_by=colmap["mjd"], metric_name="Filter Changes"
)
bundle = metric_bundles.MetricBundle(
metric, slicer, sql, summary_metrics=standardStats, display_dict=displayDict
)
bundle_list.append(bundle)
# A few basic maps
# Number of observations, coadded depths
extended_stats = standardStats.copy()
extended_stats.append(metrics.AreaSummaryMetric(decreasing=True, metric_name="top18k"))
extended_stats.append(metrics.PercentileMetric(col="metricdata", percentile=10))
displayDict = {"group": "Basic Maps", "order": 3}
slicer = spatial_slicer(
nside=nside,
lat_col=colmap["dec"],
lon_col=colmap["ra"],
lat_lon_deg=colmap["raDecDeg"],
)
metric = metrics.CountMetric(col=colmap["mjd"])
plotDict = {"percentile_clip": 95.0}
for sql in sql_per_and_all_filters:
bundle = metric_bundles.MetricBundle(
metric,
slicer,
sql,
summary_metrics=extended_stats,
display_dict=displayDict,
plot_dict=plotDict,
)
bundle_list.append(bundle)
metric = metrics.Coaddm5Metric(m5_col=colmap["fiveSigmaDepth"])
for sql in sql_per_and_all_filters:
bundle = metric_bundles.MetricBundle(
metric,
slicer,
sql,
summary_metrics=extended_stats,
display_dict=displayDict,
)
bundle_list.append(bundle)
# Let's look at two years
displayDict = {"group": "Roll Check", "order": 1}
rolling_metrics = []
rolling_metrics.append(metrics.CountMetric(col=colmap["mjd"], metric_name="Year1.0Count"))
rolling_metrics.append(metrics.CountMetric(col=colmap["mjd"], metric_name="Year2.5Count"))
rolling_metrics.append(metrics.CountMetric(col=colmap["mjd"], metric_name="Year3.5Count"))
rolling_sqls = []
rolling_sqls.append("night < 365.25")
rolling_sqls.append("night > %f and night < %f" % (365.25 * 2.5, 365.25 * 3.5))
rolling_sqls.append("night > %f and night < %f" % (365.25 * 3.5, 365.25 * 4.5))
for metric, sql in zip(rolling_metrics, rolling_sqls):
bundle = metric_bundles.MetricBundle(
metric,
slicer,
sql,
summary_metrics=extended_stats,
plot_dict=plotDict,
display_dict=displayDict,
)
bundle_list.append(bundle)
# Make a cumulative plot of a WFD spot
sql = "scheduler_note not like '%NEO%' and scheduler_note not like '%near_sun%'"
uslicer = slicers.UserPointsSlicer(ra=0, dec=-20)
metric = metrics.CumulativeMetric()
metricb = metric_bundles.MetricBundle(
metric,
uslicer,
sql,
plot_funcs=[plots.XyPlotter()],
run_name=run_name,
display_dict=displayDict,
)
metricb.summary_metrics = []
bundle_list.append(metricb)
# Checking a few basic science things
# Maybe check astrometry, observation pairs, SN
plotDict = {"percentile_clip": 95.0}
displayDict = {"group": "Science", "subgroup": "Astrometry", "order": 4}
stackerList = []
stacker = stackers.ParallaxFactorStacker(
ra_col=colmap["ra"],
dec_col=colmap["dec"],
degrees=colmap["raDecDeg"],
date_col=colmap["mjd"],
)
stackerList.append(stacker)
astrom_stats = [
metrics.AreaSummaryMetric(decreasing=False, metric_name="best18k"),
metrics.PercentileMetric(col="metricdata", percentile=90),
]
displayDict["caption"] = r"Parallax precision of an $r=20$ flat SED star"
metric = metrics.ParallaxMetric(
m5_col=colmap["fiveSigmaDepth"],
filter_col=colmap["filter"],
seeing_col=colmap["seeingGeom"],
)
sql = sql_constraint
bundle = metric_bundles.MetricBundle(
metric,
slicer,
sql,
plot_funcs=subsetPlots,
display_dict=displayDict,
stacker_list=stackerList,
plot_dict=plotDict,
summary_metrics=astrom_stats,
)
bundle_list.append(bundle)
displayDict["caption"] = r"Proper motion precision of an $r=20$ flat SED star"
metric = metrics.ProperMotionMetric(
m5_col=colmap["fiveSigmaDepth"],
mjd_col=colmap["mjd"],
filter_col=colmap["filter"],
seeing_col=colmap["seeingGeom"],
)
bundle = metric_bundles.MetricBundle(
metric,
slicer,
sql,
plot_funcs=subsetPlots,
display_dict=displayDict,
plot_dict=plotDict,
summary_metrics=astrom_stats,
)
bundle_list.append(bundle)
# Solar system stuff
displayDict["caption"] = "Fraction of observations that are in pairs"
displayDict["subgroup"] = "Solar System"
sql = '%s (filter="g" or filter="r" or filter="i")' % sqlC
pairSlicer = slicers.HealpixSlicer(
nside=pairnside,
lat_col=colmap["dec"],
lon_col=colmap["ra"],
lat_lon_deg=colmap["raDecDeg"],
)
metric = metrics.PairFractionMetric(mjd_col=colmap["mjd"])
bundle = metric_bundles.MetricBundle(
metric, pairSlicer, sql, plot_funcs=subsetPlots, display_dict=displayDict
)
bundle_list.append(bundle)
# stats from the scheduler_note column
if "scheduler_note" in colmap.keys():
displayDict = {"group": "Basic Stats", "subgroup": "Percent stats"}
metric = metrics.StringCountMetric(col=colmap["scheduler_note"], percent=True, metric_name="Percents")
sql = ""
slicer = slicers.UniSlicer()
bundle = metric_bundles.MetricBundle(metric, slicer, sql, display_dict=displayDict)
bundle_list.append(bundle)
displayDict["subgroup"] = "Count Stats"
metric = metrics.StringCountMetric(col=colmap["scheduler_note"], metric_name="Counts")
bundle = metric_bundles.MetricBundle(metric, slicer, sql, display_dict=displayDict)
bundle_list.append(bundle)
# DDF progress
ddf_surveys = ddf_locations()
displayDict["group"] = "DDF"
displayDict["subgroup"] = ""
for ddf in ddf_surveys:
label = ddf.replace("DD:", "")
sql = 'scheduler_note like "%s%%"' % ("DD:" + label)
slicer = slicers.UniSlicer()
metric = metrics.CumulativeMetric()
metricb = metric_bundles.MetricBundle(
metric,
slicer,
sql,
plot_funcs=[plots.XyPlotter()],
run_name=run_name,
display_dict=displayDict,
)
metricb.summary_metrics = []
bundle_list.append(metricb)
# Add a sky saturation check
displayDict = {}
displayDict["group"] = "Basic Stats"
displayDict["subgroup"] = "Saturation"
sql = ""
metric = metrics.SkySaturationMetric()
summary = metrics.SumMetric()
slicer = slicers.UniSlicer()
bundle_list.append(
metric_bundles.MetricBundle(metric, slicer, sql, summary_metrics=summary, display_dict=displayDict)
)
benchmarkArea = 18000
benchmarkNvisits = 825
minNvisits = 750
displayDict = {"group": "SRD", "subgroup": "FO metrics", "order": 0}
# Configure the count metric which is what is used for f0 slicer.
metric = metrics.CountExplimMetric(metric_name="fO")
plotDict = {
"xlabel": "Number of Visits",
"asky": benchmarkArea,
"n_visits": minNvisits,
"x_min": 0,
"x_max": 1500,
}
summaryMetrics = [
metrics.FOArea(
nside=nside,
norm=False,
metric_name="fOArea",
asky=benchmarkArea,
n_visit=benchmarkNvisits,
),
metrics.FOArea(
nside=nside,
norm=True,
metric_name="fOArea/benchmark",
asky=benchmarkArea,
n_visit=benchmarkNvisits,
),
metrics.FONv(
nside=nside,
norm=False,
metric_name="fONv",
asky=benchmarkArea,
n_visit=benchmarkNvisits,
),
metrics.FONv(
nside=nside,
norm=True,
metric_name="fONv/benchmark",
asky=benchmarkArea,
n_visit=benchmarkNvisits,
),
metrics.FOArea(
nside=nside,
norm=False,
metric_name=f"fOArea_{minNvisits}",
asky=benchmarkArea,
n_visit=minNvisits,
),
]
caption = "The FO metric evaluates the overall efficiency of observing. "
caption += (
"foNv: out of %.2f sq degrees, the area receives at least X and a median of Y visits "
"(out of %d, if compared to benchmark). " % (benchmarkArea, benchmarkNvisits)
)
caption += (
"fOArea: this many sq deg (out of %.2f sq deg if compared "
"to benchmark) receives at least %d visits. " % (benchmarkArea, benchmarkNvisits)
)
displayDict["caption"] = caption
slicer = slicers.HealpixSlicer(nside=nside)
bundle = metric_bundles.MetricBundle(
metric,
slicer,
"",
plot_dict=plotDict,
display_dict=displayDict,
summary_metrics=summaryMetrics,
plot_funcs=[plots.FOPlot()],
)
bundle_list.append(bundle)
# check that we have coverage for the first year
displayDict = {}
displayDict["group"] = "Year 1"
displayDict["subgroup"] = "Coverage"
nside_foot = 32
slicer = slicers.HealpixSlicer(nside=nside_foot, badval=0)
sky = EuclidOverlapFootprint(nside=nside_foot, smc_radius=4, lmc_radius=6)
footprints_hp_array, labels = sky.return_maps()
for filtername in filternames:
sql = "filter='%s' and night < 365" % filtername
metric = metrics.CountMetric(col="night", metric_name="N year 1")
summary_stat = metrics.FootprintFractionMetric(
footprint=footprints_hp_array[filtername],
n_min=3,
)
bundle = metric_bundles.MetricBundle(
metric,
slicer,
sql,
display_dict=displayDict,
summary_metrics=summary_stat,
plot_funcs=subsetPlots,
plot_dict={"color_max": 10},
)
bundle_list.append(bundle)
# Some ToO stats
displayDict = {"group": "ToO", "order": 1}
slicer = spatial_slicer(
nside=nside,
lat_col=colmap["dec"],
lon_col=colmap["ra"],
lat_lon_deg=colmap["raDecDeg"],
)
for filtername in filternames:
sql = "filter='%s' and scheduler_note like 'ToO%%'" % filtername
metric = metrics.CountMetric(col=colmap["mjd"], metric_name="N ToO")
bundle = metric_bundles.MetricBundle(
metric,
slicer,
sql,
display_dict=displayDict,
summary_metrics=extended_stats,
plot_funcs=subsetPlots,
plot_dict={},
)
bundle_list.append(bundle)
too_sqls = ["scheduler_note like 'ToO, %" + "t%i'" % hour for hour in [0, 1, 2, 4, 24, 48]] + [
"scheduler_note like 'ToO, %'"
]
slicer = slicers.UniSlicer()
for sql in too_sqls:
metric = metrics.CountMetric(col="night")
bundle = metric_bundles.MetricBundle(
metric,
slicer,
sql,
display_dict=displayDict,
)
bundle_list.append(bundle)
metric = metrics.CountUniqueMetric(col="night")
bundle = metric_bundles.MetricBundle(
metric,
slicer,
sql,
display_dict=displayDict,
)
bundle_list.append(bundle)
for b in bundle_list:
b.set_run_name(run_name)
bd = metric_bundles.make_bundles_dict_from_list(bundle_list)
# Add hourglass plots.
hrDict = hourglassPlots(colmap=colmap, runName=run_name, nyears=nyears, extraSql=sql_constraint)
bd.update(hrDict)
# Add basic slew stats.
try:
slewDict = slewBasics(colmap=colmap, run_name=run_name)
bd.update(slewDict)
except KeyError as e:
warnings.warn("Could not add slew stats: missing required key %s from colmap" % (e))
return bd