MicrolensingMetric¶
- class rubin_sim.maf.maf_contrib.MicrolensingMetric(metric_name='MicrolensingMetric', metric_calc='detect', mjd_col='observationStartMJD', m5_col='fiveSigmaDepth', filter_col='filter', night_col='night', pts_needed=2, mag_dict=None, detect_sigma=3.0, time_before_peak=0, detect=False, **kwargs)¶
Bases:
BaseMetric
Quantifies detectability of Microlensing events. Can also return the number of datapoints within two crossing times of the peak of event.
- Parameters:
- metric_calc: str
Type of metric. If metric_calc == ‘detect’, returns the number of microlensing events detected within certain parameters. If metric_calc == ‘Npts’, returns the number of points within two crossing times of the peak of the vent. Default is ‘detect’
- pts_neededint
Number of an object’s lightcurve points required to be above the 5-sigma limiting depth before it is considered detected.
- time_before_peak: int or str
Number of days before lightcurve peak to qualify event as triggered. If time_before_peak == ‘optimal’, the number of days before the lightcurve peak is the time of maximal information. Default is 0.
- detect: bool
By default we trigger which only looks at points before the peak of the lightcurve. When detect = True, observations on either side of the lightcurve are considered. Default is False.
Notes
- Expects slice_point to have keys of:
peak_time : float (days) crossing_time : float (days) impact_parameter : float (positive) blending_factors (optional): float (between 0 and 1)
Methods Summary
run
(data_slice[, slice_point])Calculate metric values.
Methods Documentation
- run(data_slice, slice_point=None)¶
Calculate metric values.
- Parameters:
- data_slice
numpy.recarray
Values passed to metric by the slicer, which the metric will use to calculate metric values at each slice_point.
- slice_point
dict
or None Dictionary of slice_point metadata passed to each metric. E.g. the ra/dec of the healpix pixel or opsim fieldId.
- data_slice
- Returns: