plot_run_metric¶
- rubin_sim.maf.run_comparison.plot_run_metric(summary, baseline_run=None, vertical_quantity='run', horizontal_quantity='value', run_label_map=None, metric_label_map=None, metric_set=None, ax=None, cmap=[[0.188235, 0.635294, 0.854902], [0.988235, 0.309804, 0.188235], [0.898039, 0.682353, 0.219608], [0.427451, 0.564706, 0.309804], [0.545098, 0.545098, 0.545098], [0.090196, 0.745098, 0.811765], [0.580392, 0.403922, 0.741176], [0.839216, 0.152941, 0.156863], [0.121569, 0.466667, 0.705882], [0.890196, 0.466667, 0.760784], [0.54902, 0.337255, 0.294118], [0.737255, 0.741176, 0.133333], [0.227451, 0.003922, 0.513725], [0.0, 0.262745, 0.0], [0.058824, 1.0, 0.662745], [0.368627, 0.0, 0.25098], [0.776471, 0.741176, 1.0], [0.258824, 0.313725, 0.321569], [0.721569, 0.0, 0.501961], [1.0, 0.717647, 0.701961], [0.490196, 0.007843, 0.0], [0.380392, 0.14902, 1.0], [1.0, 1.0, 0.603922], [0.682353, 0.788235, 0.670588], [0.0, 0.52549, 0.486275], [0.333333, 0.227451, 0.0], [0.580392, 0.988235, 1.0], [0.0, 0.74902, 0.0], [0.490196, 0.0, 0.627451], [0.670588, 0.447059, 0.0], [0.568627, 1.0, 0.0], [0.003922, 0.745098, 0.541176], [0.0, 0.270588, 0.482353], [0.784314, 0.509804, 0.435294], [1.0, 0.121569, 0.513725], [0.866667, 0.0, 1.0], [0.019608, 0.454902, 0.0], [0.392157, 0.266667, 0.380392], [0.533333, 0.560784, 1.0], [1.0, 0.713725, 0.956863], [0.32549, 0.384314, 0.215686], [0.807843, 0.521569, 1.0], [0.407843, 0.415686, 0.517647], [0.745098, 0.705882, 0.745098], [0.647059, 0.376471, 0.537255], [0.584314, 0.827451, 1.0], [0.003922, 0.0, 0.972549], [1.0, 0.501961, 0.007843], [0.545098, 0.160784, 0.270588], [0.678431, 0.627451, 0.427451], [0.32549, 0.270588, 0.545098], [0.784314, 1.0, 0.85098], [0.666667, 0.27451, 0.0], [1.0, 0.47451, 0.560784], [0.513725, 0.827451, 0.443137], [0.564706, 0.619608, 0.74902], [0.580392, 0.0, 0.960784], [0.921569, 0.815686, 0.607843], [0.678431, 0.545098, 0.694118], [0.0, 0.388235, 0.290196], [1.0, 0.862745, 0.0], [0.533333, 0.466667, 0.317647], [0.494118, 0.670588, 0.639216], [0.0, 0.0, 0.592157], [0.960784, 0.0, 0.776471], [0.396078, 0.2, 0.160784], [0.0, 0.4, 0.470588], [0.015686, 0.890196, 0.784314], [0.654902, 0.215686, 0.682353], [0.772549, 0.858824, 0.882353], [0.301961, 0.431373, 1.0], [0.607843, 0.576471, 0.003922], [0.803922, 0.345098, 0.419608], [0.937255, 0.870588, 0.996078], [0.47451, 0.352941, 0.0], [0.372549, 0.533333, 0.603922], [0.705882, 1.0, 0.572549], [0.368627, 0.447059, 0.419608], [0.321569, 0.0, 0.4], [0.019608, 0.529412, 0.317647], [0.517647, 0.12549, 0.435294], [0.235294, 0.588235, 0.019608], [0.396078, 0.45098, 0.0], [0.945098, 0.627451, 0.423529], [0.372549, 0.313725, 0.270588], [0.741176, 0.0, 0.290196], [0.815686, 0.407843, 0.152941], [0.843137, 0.588235, 0.670588], [0.537255, 0.364706, 1.0], [0.509804, 0.423529, 0.462745], [0.168627, 0.333333, 0.72549], [0.431373, 0.486275, 0.733333], [0.905882, 0.835294, 0.827451], [0.364706, 0.0, 0.094118], [0.486275, 0.231373, 0.003922], [0.501961, 0.694118, 0.490196], [0.784314, 0.85098, 0.490196], [0.0, 0.909804, 0.231373], [0.486275, 0.698039, 1.0], [1.0, 0.333333, 1.0], [0.643137, 0.152941, 0.129412], [0.113725, 0.894118, 1.0], [0.490196, 0.686275, 0.231373], [0.482353, 0.294118, 0.568627], [0.878431, 1.0, 0.282353], [0.419608, 0.0, 0.768627], [0.803922, 0.658824, 0.592157], [0.745098, 0.388235, 0.768627], [0.537255, 0.803922, 0.807843], [0.27451, 0.011765, 0.784314], [0.368627, 0.572549, 0.47451], [0.254902, 0.290196, 0.003922], [0.019608, 0.654902, 0.615686], [0.811765, 0.54902, 0.215686], [1.0, 0.972549, 0.815686], [0.262745, 0.329412, 0.443137], [0.709804, 0.266667, 1.0], [0.811765, 0.286275, 0.576471], [0.811765, 0.643137, 0.87451], [0.580392, 0.831373, 0.0], [0.654902, 0.580392, 0.854902], [0.176471, 0.647059, 0.345098], [0.552941, 0.890196, 0.713725], [0.643137, 0.662745, 0.615686], [0.423529, 0.360784, 0.717647], [1.0, 0.494118, 0.368627], [0.654902, 0.513725, 0.541176], [0.686275, 0.745098, 0.847059], [0.164706, 0.768627, 1.0], [0.65098, 0.407843, 0.239216], [0.964706, 0.568627, 0.996078], [0.529412, 0.294118, 0.392157], [1.0, 0.047059, 0.294118], [0.129412, 0.368627, 0.137255], [0.258824, 0.572549, 1.0], [0.529412, 0.513725, 0.615686], [0.403922, 0.176471, 0.270588], [0.694118, 0.309804, 0.254902], [0.0, 0.305882, 0.32549], [0.372549, 0.105882, 0.0], [0.678431, 0.254902, 0.403922], [0.313725, 0.196078, 0.403922], [0.839216, 1.0, 0.992157], [0.498039, 0.709804, 0.819608], [0.662745, 0.72549, 0.411765], [1.0, 0.588235, 0.796078], [0.784314, 0.454902, 0.584314], [0.211765, 0.313725, 0.223529], [1.0, 0.815686, 0.388235], [0.368627, 0.345098, 0.384314], [0.529412, 0.580392, 0.462745], [0.662745, 0.470588, 1.0], [0.011765, 0.784314, 0.388235], [0.905882, 0.745098, 0.831373], [0.831373, 0.890196, 0.815686], [0.529412, 0.403922, 0.564706], [0.537255, 0.486275, 0.152941], [0.803922, 0.862745, 1.0], [0.666667, 0.403922, 0.419608], [0.196078, 0.203922, 0.454902], [1.0, 0.368627, 0.662745], [0.0, 0.607843, 0.690196], [0.443137, 1.0, 0.866667], [0.470588, 0.360784, 0.219608], [0.313725, 0.396078, 0.607843], [0.8, 0.0, 0.701961], [0.341176, 0.482353, 0.333333], [0.317647, 0.431373, 0.482353], [0.003922, 0.372549, 0.572549], [0.666667, 0.741176, 0.745098], [0.003922, 0.498039, 0.6], [0.015686, 0.866667, 0.592157], [0.529412, 0.227451, 0.172549], [0.941176, 0.588235, 0.556863], [0.458824, 0.776471, 0.666667], [0.439216, 0.411765, 0.364706], [0.8, 0.862745, 0.035294], [0.686275, 0.521569, 0.341176], [0.847059, 0.0, 0.458824], [0.615686, 0.247059, 0.505882], [0.85098, 0.270588, 0.0], [0.866667, 0.403922, 0.329412], [0.372549, 1.0, 0.47451], [0.835294, 0.694118, 0.45098], [0.384314, 0.14902, 0.368627], [0.729412, 0.635294, 0.239216], [0.85098, 0.94902, 0.701961], [0.341176, 0.007843, 0.560784], [0.631373, 0.607843, 0.666667], [0.301961, 0.290196, 0.152941], [0.643137, 0.662745, 1.0], [0.67451, 0.909804, 0.858824], [0.6, 0.34902, 0.003922], [0.67451, 0.0, 0.886275], [0.278431, 0.509804, 0.184314], [0.796078, 0.764706, 0.678431], [0.0, 0.772549, 0.713725], [0.380392, 0.32549, 0.470588], [0.2, 0.427451, 0.407843], [0.647059, 0.572549, 0.501961], [0.517647, 0.6, 0.635294], [0.992157, 0.341176, 0.392157], [0.439216, 0.588235, 0.823529], [0.447059, 0.552941, 0.027451], [0.498039, 0.0, 0.298039], [0.082353, 0.188235, 0.627451], [0.819608, 0.756863, 0.886275], [0.788235, 0.521569, 0.815686], [0.423529, 0.270588, 0.294118], [0.498039, 0.0, 0.141176], [0.0, 0.635294, 0.47451], [0.698039, 0.662745, 0.811765], [0.976471, 0.0, 0.0], [0.690196, 0.913725, 1.0], [0.576471, 0.619608, 0.313725], [0.447059, 0.478431, 0.509804], [0.85098, 0.180392, 0.333333], [0.278431, 0.380392, 0.003922], [0.0, 0.34902, 1.0], [0.466667, 0.25098, 0.709804], [0.67451, 0.894118, 0.376471], [0.403922, 0.270588, 0.145098], [0.321569, 0.364706, 0.317647], [0.584314, 0.45098, 0.407843], [0.662745, 0.894118, 0.603922], [0.639216, 0.0, 0.345098], [0.85098, 0.384314, 0.964706], [0.556863, 0.490196, 0.811765], [1.0, 0.741176, 0.576471], [0.639216, 0.0, 0.572549], [0.603922, 1.0, 0.72549], [0.654902, 0.760784, 1.0], [0.956863, 0.384314, 0.0], [0.898039, 0.941176, 1.0], [0.721569, 0.611765, 0.643137], [0.376471, 0.588235, 0.580392], [1.0, 0.623529, 0.207843], [0.54902, 0.160784, 0.0], [0.447059, 0.419608, 0.196078], [0.87451, 0.509804, 0.305882], [0.686275, 0.482353, 0.835294], [0.737255, 0.176471, 0.0], [0.482353, 0.435294, 0.639216], [0.282353, 0.262745, 0.384314], [0.780392, 0.639216, 1.0], [0.0, 0.301961, 0.156863], [0.768627, 0.776471, 0.556863], [0.878431, 0.282353, 0.843137], [0.905882, 0.913725, 0.396078], [0.898039, 0.756863, 0.043137], [0.0, 0.956863, 0.945098], [0.623529, 0.356863, 0.635294], [0.298039, 0.254902, 0.717647], [0.396078, 0.2, 0.556863], [0.462745, 0.494118, 0.423529], [0.662745, 0.541176, 0.211765]], linestyles=None, markers=['o'], shade_fraction=0.05)¶
Plot normalized metric values as colored points on a cartesian plane.
- Parameters:
- summary
pandas.DataFrame
Values to be plotted. Should only include runs and metrics that should actually appear on the plot.
- baseline_run
str
Name of the run to use as the baseline for normalization (see (archive.normalize_metric_summaries).
- vertical_quantity{‘run’, ‘metric’, ‘value’}
Should the run, metric name, or metric value be mapped onto the y axis?
- horizontal_quantity{‘run’, ‘metric’, ‘value’}
Should the run, metric name, or metric value be mapped onto the x axis?
- vwidth
float
The width of the plot, in normalized metrics summary units. (The limits of the x axis will be 1-vwidth/2 and 1+width/2).
- run_label_mapmapping
A python
mapping
between canonical run names and run labels as they should appear on plot labels. Use of this option is discouraged, because it makes it harder to match plots to data. run_label_map could be created by archive.get_runs().loc[these_runs][‘brief’]- metric_label_mapmapping
A python
mapping
between canonical metric names and metric labels as they should appear on plot labels. Use this option carefully, because it makes it harder to match plots to metric calculation code.. metric_label_map could be equivalent to metric_set[‘short_name’]- metric_set
pandas.DataFrame
Metric metadata as returned by
archive.get_metric_sets
- ax
matplotlib.axes.Axes
The axes on which to plot the data.
- cmap
matplotlib.colors.ColorMap
The color map to use for point colors.
- linestyles
list
A list of matplotlib linestyles to use to connect the lines
- markers
list
, opt A list of matplotlib markers to use to represent the points
- shade_fraction
float
, opt Add a red/green shading to the plot, starting at 1 +/- shade_fraction. Set to 0 or None for no shading.
- summary
- Returns:
- fig
matplotlib.figure.Figure
The plot figure.
- ax
matplotilb.axes.Axes
The plot axes.
- The run order and metric order (imposed into the summary dataframe passed here as
summary
) - are important and preserved in the plot. These should be set in the (subset)
summary
dataframe - passed here; the metric_set is available, but used for normalization and plot styling.
- fig