TgapsMetric¶
- class rubin_sim.maf.metrics.TgapsMetric(times_col='observationStartMJD', all_gaps=False, bins=array([0., 0.00347222, 0.00694444, 0.01041667, 0.01388889, 0.01736111, 0.02083333, 0.02430556, 0.02777778, 0.03125, 0.03472222, 0.03819444, 0.04166667, 0.04513889, 0.04861111, 0.05208333, 0.05555556, 0.05902778, 0.0625, 0.06597222, 0.06944444, 0.07291667, 0.07638889, 0.07986111]), units='days', **kwargs)¶
Bases:
BaseMetric
Histogram the times of the gaps between observations.
Measure the gaps between observations. By default, only gaps between neighboring visits are computed. If all_gaps is set to true, all gaps are computed (i.e., if there are observations at 10, 20, 30 and 40 the default will return a histogram of [10,10,10] while all_gaps returns a histogram of [10,10,10,20,20,30])
- Parameters:
- times_col
str
, optional The column name for the exposure times. Values assumed to be in days. Default observationStartMJD.
- all_gaps
bool
, optional Histogram the gaps between all observations (True) or just successive observations (False)? Default is False. If all gaps are used, this metric can become significantly slower.
- bins
np.ndarray
, optional The bins to use for the histogram of time gaps (in days, or same units as times_col). Default values are bins from 0 to 2 hours, in 5 minute intervals.
- times_col
- Returns:
- histogram
np.ndarray
Returns a histogram of the tgaps at each slice point; these histograms can be combined and plotted using the ‘SummaryHistogram plotter’.
- histogram
Methods Summary
run
(data_slice[, slice_point])Calculate metric values.
Methods Documentation
- run(data_slice, slice_point=None)¶
Calculate metric values.
- Parameters:
- data_slice
numpy.recarray
Values passed to metric by the slicer, which the metric will use to calculate metric values at each slice_point.
- slice_point
dict
or None Dictionary of slice_point metadata passed to each metric. E.g. the ra/dec of the healpix pixel or opsim fieldId.
- data_slice
- Returns: