TdcMetric¶
- class rubin_sim.maf.metrics.TdcMetric(mjd_col='observationStartMJD', night_col='night', filter_col='filter', m5_col='fiveSigmaDepth', mag_cuts=None, metric_name='TDC', cad_norm=3.0, sea_norm=4.0, camp_norm=5.0, badval=-999, **kwargs)¶
Bases:
BaseMetric
Calculate the Time Delay Challenge metric, as described in Liao et al 2015 (https://arxiv.org/pdf/1409.1254.pdf).
This combines the MeanCampaignFrequency/MeanNightSeparation, the SeasonLength, and the CampaignLength metrics above, but rewritten to calculate season information only once.
cad_norm = in units of days sea_norm = in units of months camp_norm = in units of years
This metric also adds a requirement to achieve limiting magnitudes after galactic dust extinction, in various bandpasses, in order to exclude visits which are not useful for detecting quasars (due to being short or having high sky brightness, etc.) and to reject regions with high galactic dust extinction.
- Parameters:
- mjd_col: str, optional
Column name for mjd. Default observationStartMJD.
- night_col: str, optional
Column name for night. Default night.
- filter_col: str, optional
Column name for filter. Default filter.
- m5_col: str, optional
Column name for five-sigma depth. Default fiveSigmaDepth.
- mag_cuts: dict, optional
Dictionary with filtername:mag limit (after dust extinction). Default None in kwarg. Defaults set within metric: {‘u’: 22.7, ‘g’: 24.1, ‘r’: 23.7, ‘i’: 23.1, ‘z’: 22.2, ‘y’: 21.4}
- metricName: str, optional
Metric Name. Default TDC.
- cad_norm: float, optional
Cadence normalization constant, in units of days. Default 3.
- sea_norm: float, optional
Season normalization constant, in units of months. Default 4.
- camp_norm: float, optional
Campaign length normalization constant, in units of years. Default 5.
- badval: float, optional
Return this value instead of the dictionary for bad points.
- Returns:
- dictionary
Dictionary of values for {‘rate’, ‘precision’, ‘accuracy’} at this point in the sky.
Methods Summary
reduce_accuracy
(metric_value)reduce_cadence
(metric_value)reduce_campaign
(metric_value)reduce_precision
(metric_value)reduce_rate
(metric_value)reduce_season
(metric_value)run
(data_slice, slice_point)Calculate metric values.
Methods Documentation
- reduce_accuracy(metric_value)¶
- reduce_cadence(metric_value)¶
- reduce_campaign(metric_value)¶
- reduce_precision(metric_value)¶
- reduce_rate(metric_value)¶
- reduce_season(metric_value)¶
- run(data_slice, slice_point)¶
Calculate metric values.
- Parameters:
- data_slice
numpy.ndarray
, (N,) Values passed to metric by the slicer, which the metric will use to calculate metric values at each slice_point.
- slice_point
dict
or None Dictionary of slice_point metadata passed to each metric. E.g. the ra/dec of the healpix pixel or opsim fieldId.
- data_slice
- Returns: