SNSLMetric¶
- class rubin_sim.maf.metrics.SNSLMetric(metric_name='SNSLMetric', mjd_col='observationStartMJD', filter_col='filter', night_col='night', m5_col='fiveSigmaDepth', season=[-1], nfilters_min=4, min_season_obs=5, m5mins=None, maps=['DustMap'], **kwargs)¶
Bases:
BaseMetric
Calculate the number of expected well-measured strongly lensed SN (per data_slice).
The number of expected strongly lensed SN detections with a well-measured time delay is given by:
N (lensed SNe Ia with well measured time delay) = 45.7 * survey_area / (20000 deg^2) * cumulative_season_length / (2.5 years) / (2.15 * exp(0.37 * gap_median_all_filter))
where: survey_area: survey area (in deg2) cumulative_season_length: cumulative season length (in years) gap_median_all_filter: median gap (all filters) (in days)
(reference? metric originated from Simon Huber and Phillipe Gris)
- Parameters:
- metricNamestr, optional
metric name Default : SNCadenceMetric
- mjd_colstr, optional
mjd column name Default : observationStartMJD,
- filter_colstr, optional
filter column name Default: filter
- night_colstr, optional
night column name Default : night
- m5_colstr, optional
individual visit five-sigma limiting magnitude (m5) column name Default : fiveSigmaDepth
- season: int (list) or -1, optional
season to process (default: -1: all seasons)
- nfilters_minint, optional
The number of filters to demand in a season Default: 4.
- min_season_obsint, optional
Minimum number of observations per season. Default 5.
- m5minsdict, optional
Minimum individual image depth for visit to ‘count’. Default None uses {‘u’: 22.7, ‘g’: 24.1, ‘r’: 23.7, ‘i’: 23.1, ‘z’: 22.2, ‘y’: 21.4}.
- mapslist, optional
List of maps to use. Default is the dustmap, to reduce m5 limiting mags accordingly.
- Returns:
- float
Number of expected well-measured strongly lensed SN
Methods Summary
n_lensed
(area, cadence, season_length)- Parameters:
run
(data_slice[, slice_point])Runs the metric for each data_slice
Methods Documentation
- n_lensed(area, cadence, season_length)¶
- Parameters:
- areafloat
Area in square degrees related to this data_slice (sq deg)
- gap_medianfloat
median gap between nights with visits (days) - any filter
- cumul_seasonfloat
length of the season or period of consideration (years)
- Returns:
- float
Number of strongly lensed SN expected in this area
- run(data_slice, slice_point=None)¶
Runs the metric for each data_slice
- Parameters:
- data_slicesimulation data
- slice_point: slice_point(default None)
- Returns:
- number of SL time delay supernovae