ParallaxDcrDegenMetric

class rubin_sim.maf.metrics.ParallaxDcrDegenMetric(metric_name='ParallaxDcrDegenMetric', seeing_col='seeingFwhmGeom', m5_col='fiveSigmaDepth', atm_err=0.01, rmag=20.0, sed_template='flat', filter_col='filter', tol=0.05, **kwargs)

Bases: BaseMetric

Use the full parallax and DCR displacement vectors to find if they are degenerate.

Parameters:
metricNamestr, optional

Default ‘ParallaxDcrDegenMetric’.

seeing_colstr, optional

Default ‘FWHMgeom’

m5_colstr, optional

Default ‘fiveSigmaDepth’

filter_colstr

Default ‘filter’

atm_errfloat

Minimum error in photometry centroids introduced by the atmosphere (arcseconds). Default 0.01.

rmagfloat

r-band magnitude of the fiducual star that is being used (mag).

SedTemplatestr

The SED template to use for fiducia star colors, passed to rubin_sim.utils.stellarMags. Default ‘flat’

tolfloat

Tolerance for how well curve_fit needs to work before believing the covariance result. Default 0.05.

Returns:
metricValuefloat

Returns the correlation coefficient between the best-fit parallax amplitude and DCR amplitude. The RA and Dec offsets are fit simultaneously. Values close to zero are good, values close to +/- 1 are bad. Experience with fitting Monte Carlo simulations suggests the astrometric fits start becoming poor around a correlation of 0.7.

Methods Summary

run(data_slice[, slice_point])

Calculate metric values.

Methods Documentation

run(data_slice, slice_point=None)

Calculate metric values.

Parameters:
data_slicenumpy.recarray

Values passed to metric by the slicer, which the metric will use to calculate metric values at each slice_point.

slice_pointdict or None

Dictionary of slice_point metadata passed to each metric. E.g. the ra/dec of the healpix pixel or opsim fieldId.

Returns:
metricValue: int float or object

The metric value at each slice_point.