PeriodicStarModulationMetric¶
- class rubin_sim.maf.maf_contrib.PeriodicStarModulationMetric(metric_name='PeriodicStarModulationMetric', mjd_col='observationStartMJD', m5_col='fiveSigmaDepth', filter_col='filter', period=10.0, amplitude=0.5, phase=2.0, random_phase=False, time_interval=50, n_monte=1000, period_tol=0.05, amp_tol=0.1, means=[20.0, 20.0, 20.0, 20.0, 20.0, 20.0], mag_tol=0.1, n_bands=3, seed=42, **kwargs)¶
Bases:
BaseMetric
Evaluate how well a periodic source can be fit on a short baseline, using a Monte Carlo simulation.
At each slice_point, run a Monte Carlo simulation to see how well a periodic source can be fit. Assumes a simple sin-wave light-curve, and generates Gaussain noise based in the 5-sigma limiting depth of each observation. Light curves are evaluated piecewise to test how well we can recover the period, phase and amplitude from shorter baselines. We allow for a random phase offset to mimic observation starting at random phase. Also, we vary the periods and amplitudes within +/- 10 % to allow for a more realistic sample of variable stars.
- Parameters:
- period
float
, opt days (default 10)
- amplitude
float
, opt mags (default 0.5)
- phase
float
, opt days (default 2.)
- random_phase
bool
, opt a random phase is assigned (default False)
- time_interval
float
, opt days (default 50); the interval over which we want to evaluate the light curve
- n_monte
int
, opt number of noise realizations to make in the Monte Carlo (default 1000)
- period_tol
float
, opt fractional tolerance on the period to demand for a star to be considered well-fit (default 0.05)
- amp_tol
float
, opt fractional tolerance on the amplitude to demand (default 0.10)
- means
list
offloat
, opt mean magnitudes for ugrizy (default all 20)
- mag_tol
float
, opt Mean magnitude tolerance (mags) (default 0.1)
- n_bands
int
, opt Number of bands that must be within mag_tol (default 3)
- seed
int
, opt random number seed (default 42)
- period
Methods Summary
run
(data_slice[, slice_point])Calculate metric values.
Methods Documentation
- run(data_slice, slice_point=None)¶
Calculate metric values.
- Parameters:
- data_slice
numpy.recarray
Values passed to metric by the slicer, which the metric will use to calculate metric values at each slice_point.
- slice_point
dict
or None Dictionary of slice_point metadata passed to each metric. E.g. the ra/dec of the healpix pixel or opsim fieldId.
- data_slice
- Returns: